Cargando…
Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster
How mating preferences evolve remains one of the major unsolved mysteries in evolutionary biology. One major impediment to the study of ornament-preference coevolution is that many aspects of the theoretical literature remain loosely connected to empirical data. Theoretical models typically streamli...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887542/ https://www.ncbi.nlm.nih.gov/pubmed/24212081 http://dx.doi.org/10.1534/g3.113.007468 |
_version_ | 1782479019705368576 |
---|---|
author | Ratterman, Nicholas L. Rosenthal, Gil G. Carney, Ginger E. Jones, Adam G. |
author_facet | Ratterman, Nicholas L. Rosenthal, Gil G. Carney, Ginger E. Jones, Adam G. |
author_sort | Ratterman, Nicholas L. |
collection | PubMed |
description | How mating preferences evolve remains one of the major unsolved mysteries in evolutionary biology. One major impediment to the study of ornament-preference coevolution is that many aspects of the theoretical literature remain loosely connected to empirical data. Theoretical models typically streamline mating preferences by describing preference functions with a single parameter, a modeling convenience that may veil important aspects of preference evolution. Here, we use a high-throughput behavioral assay in Drosophila melanogaster to quantify attractiveness and multiple components of preferences in both males and females. Females varied genetically with respect to how they ranked males in terms of attractiveness as well as the extent to which they discriminated among different males. Conversely, males showed consistent preferences for females, suggesting that D. melanogaster males tend to rank different female phenotypes in the same order in terms of attractiveness. Moreover, we reveal a heretofore undocumented positive genetic correlation between male attractiveness and female choosiness, which is a measure of the variability in a female’s response to different male phenotypes. This genetic correlation sets the stage for female choosiness to evolve via a correlated response to selection on male traits and potentially adds a new dimension to the Fisherian sexual selection process. |
format | Online Article Text |
id | pubmed-3887542 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-38875422014-01-10 Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster Ratterman, Nicholas L. Rosenthal, Gil G. Carney, Ginger E. Jones, Adam G. G3 (Bethesda) Investigations How mating preferences evolve remains one of the major unsolved mysteries in evolutionary biology. One major impediment to the study of ornament-preference coevolution is that many aspects of the theoretical literature remain loosely connected to empirical data. Theoretical models typically streamline mating preferences by describing preference functions with a single parameter, a modeling convenience that may veil important aspects of preference evolution. Here, we use a high-throughput behavioral assay in Drosophila melanogaster to quantify attractiveness and multiple components of preferences in both males and females. Females varied genetically with respect to how they ranked males in terms of attractiveness as well as the extent to which they discriminated among different males. Conversely, males showed consistent preferences for females, suggesting that D. melanogaster males tend to rank different female phenotypes in the same order in terms of attractiveness. Moreover, we reveal a heretofore undocumented positive genetic correlation between male attractiveness and female choosiness, which is a measure of the variability in a female’s response to different male phenotypes. This genetic correlation sets the stage for female choosiness to evolve via a correlated response to selection on male traits and potentially adds a new dimension to the Fisherian sexual selection process. Genetics Society of America 2013-11-08 /pmc/articles/PMC3887542/ /pubmed/24212081 http://dx.doi.org/10.1534/g3.113.007468 Text en Copyright © 2014 Ratterman et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Ratterman, Nicholas L. Rosenthal, Gil G. Carney, Ginger E. Jones, Adam G. Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster |
title | Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster |
title_full | Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster |
title_fullStr | Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster |
title_full_unstemmed | Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster |
title_short | Genetic Variation and Covariation in Male Attractiveness and Female Mating Preferences in Drosophila melanogaster |
title_sort | genetic variation and covariation in male attractiveness and female mating preferences in drosophila melanogaster |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887542/ https://www.ncbi.nlm.nih.gov/pubmed/24212081 http://dx.doi.org/10.1534/g3.113.007468 |
work_keys_str_mv | AT rattermannicholasl geneticvariationandcovariationinmaleattractivenessandfemalematingpreferencesindrosophilamelanogaster AT rosenthalgilg geneticvariationandcovariationinmaleattractivenessandfemalematingpreferencesindrosophilamelanogaster AT carneygingere geneticvariationandcovariationinmaleattractivenessandfemalematingpreferencesindrosophilamelanogaster AT jonesadamg geneticvariationandcovariationinmaleattractivenessandfemalematingpreferencesindrosophilamelanogaster |