Cargando…
Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure()
Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have inv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888925/ https://www.ncbi.nlm.nih.gov/pubmed/24239689 http://dx.doi.org/10.1016/j.bbr.2013.11.003 |
_version_ | 1782299129388466176 |
---|---|
author | Frick, Andreas Gingnell, Malin Marquand, Andre F. Howner, Katarina Fischer, Håkan Kristiansson, Marianne Williams, Steven C.R. Fredrikson, Mats Furmark, Tomas |
author_facet | Frick, Andreas Gingnell, Malin Marquand, Andre F. Howner, Katarina Fischer, Håkan Kristiansson, Marianne Williams, Steven C.R. Fredrikson, Mats Furmark, Tomas |
author_sort | Frick, Andreas |
collection | PubMed |
description | Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. |
format | Online Article Text |
id | pubmed-3888925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier/North-Holland Biomedical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-38889252014-02-01 Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() Frick, Andreas Gingnell, Malin Marquand, Andre F. Howner, Katarina Fischer, Håkan Kristiansson, Marianne Williams, Steven C.R. Fredrikson, Mats Furmark, Tomas Behav Brain Res Short Communication Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. Elsevier/North-Holland Biomedical Press 2014-02-01 /pmc/articles/PMC3888925/ /pubmed/24239689 http://dx.doi.org/10.1016/j.bbr.2013.11.003 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Short Communication Frick, Andreas Gingnell, Malin Marquand, Andre F. Howner, Katarina Fischer, Håkan Kristiansson, Marianne Williams, Steven C.R. Fredrikson, Mats Furmark, Tomas Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
title | Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
title_full | Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
title_fullStr | Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
title_full_unstemmed | Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
title_short | Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
title_sort | classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure() |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888925/ https://www.ncbi.nlm.nih.gov/pubmed/24239689 http://dx.doi.org/10.1016/j.bbr.2013.11.003 |
work_keys_str_mv | AT frickandreas classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT gingnellmalin classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT marquandandref classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT hownerkatarina classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT fischerhakan classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT kristianssonmarianne classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT williamsstevencr classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT fredriksonmats classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure AT furmarktomas classifyingsocialanxietydisorderusingmultivoxelpatternanalysesofbrainfunctionandstructure |