Cargando…
Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases
Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water condu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889808/ https://www.ncbi.nlm.nih.gov/pubmed/23813972 http://dx.doi.org/10.1093/hmg/ddt307 |
_version_ | 1782299196553953280 |
---|---|
author | Vilas, Gonzalo L. Loganathan, Sampath K. Liu, Jun Riau, Andri K. Young, James D. Mehta, Jodhbir S. Vithana, Eranga N. Casey, Joseph R. |
author_facet | Vilas, Gonzalo L. Loganathan, Sampath K. Liu, Jun Riau, Andri K. Young, James D. Mehta, Jodhbir S. Vithana, Eranga N. Casey, Joseph R. |
author_sort | Vilas, Gonzalo L. |
collection | PubMed |
description | Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and cell division. All known water-channelling proteins belong to the major intrinsic protein family, exemplified by aquaporins (AQPs). Here we identified SLC4A11, a member of the solute carrier family 4 of bicarbonate transporters, as an unexpected addition to known transmembrane water movement facilitators. The rate of osmotic-gradient driven cell-swelling was monitored in Xenopus laevis oocytes and HEK293 cells, expressing human AQP1, NIP5;1 (a water channel protein from plant), hCNT3 (a human nucleoside transporter) and human SLC4A11. hCNT3-expressing cells swelled no faster than control cells, whereas SLC4A11-mediated water permeation at a rate about half that of some AQP proteins. SLC4A11-mediated water movement was: (i) similar to some AQPs in rate; (ii) uncoupled from solute-flux; (iii) inhibited by stilbene disulfonates (classical SLC4 inhibitors); (iv) inactivated in one CHED2 mutant (R125H). Localization of AQP1 and SLC4A11 in human and murine corneal (apical and basolateral, respectively) suggests a cooperative role in mediating trans-endothelial water reabsorption. Slc4a11(−/−) mice manifest corneal oedema and distorted endothelial cells, consistent with loss of a water-flux. Observed water-flux through SLC4A11 extends the repertoire of known water movement pathways and call for a re-examination of explanations for water movement in human tissues. |
format | Online Article Text |
id | pubmed-3889808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-38898082014-01-14 Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases Vilas, Gonzalo L. Loganathan, Sampath K. Liu, Jun Riau, Andri K. Young, James D. Mehta, Jodhbir S. Vithana, Eranga N. Casey, Joseph R. Hum Mol Genet Articles Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and cell division. All known water-channelling proteins belong to the major intrinsic protein family, exemplified by aquaporins (AQPs). Here we identified SLC4A11, a member of the solute carrier family 4 of bicarbonate transporters, as an unexpected addition to known transmembrane water movement facilitators. The rate of osmotic-gradient driven cell-swelling was monitored in Xenopus laevis oocytes and HEK293 cells, expressing human AQP1, NIP5;1 (a water channel protein from plant), hCNT3 (a human nucleoside transporter) and human SLC4A11. hCNT3-expressing cells swelled no faster than control cells, whereas SLC4A11-mediated water permeation at a rate about half that of some AQP proteins. SLC4A11-mediated water movement was: (i) similar to some AQPs in rate; (ii) uncoupled from solute-flux; (iii) inhibited by stilbene disulfonates (classical SLC4 inhibitors); (iv) inactivated in one CHED2 mutant (R125H). Localization of AQP1 and SLC4A11 in human and murine corneal (apical and basolateral, respectively) suggests a cooperative role in mediating trans-endothelial water reabsorption. Slc4a11(−/−) mice manifest corneal oedema and distorted endothelial cells, consistent with loss of a water-flux. Observed water-flux through SLC4A11 extends the repertoire of known water movement pathways and call for a re-examination of explanations for water movement in human tissues. Oxford University Press 2013-11-15 2013-06-27 /pmc/articles/PMC3889808/ /pubmed/23813972 http://dx.doi.org/10.1093/hmg/ddt307 Text en © The Author 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Vilas, Gonzalo L. Loganathan, Sampath K. Liu, Jun Riau, Andri K. Young, James D. Mehta, Jodhbir S. Vithana, Eranga N. Casey, Joseph R. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases |
title | Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases |
title_full | Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases |
title_fullStr | Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases |
title_full_unstemmed | Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases |
title_short | Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases |
title_sort | transmembrane water-flux through slc4a11: a route defective in genetic corneal diseases |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889808/ https://www.ncbi.nlm.nih.gov/pubmed/23813972 http://dx.doi.org/10.1093/hmg/ddt307 |
work_keys_str_mv | AT vilasgonzalol transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT loganathansampathk transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT liujun transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT riauandrik transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT youngjamesd transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT mehtajodhbirs transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT vithanaerangan transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases AT caseyjosephr transmembranewaterfluxthroughslc4a11aroutedefectiveingeneticcornealdiseases |