Cargando…

Association between socio-economic status and hemoglobin A1c levels in a Canadian primary care adult population without diabetes

BACKGROUND: Hgb A1c levels may be higher in persons without diabetes of lower socio-economic status (SES) but evidence about this association is limited; there is therefore uncertainty about the inclusion of SES in clinical decision support tools informing the provision and frequency of Hgb A1c test...

Descripción completa

Detalles Bibliográficos
Autores principales: Aliarzadeh, Babak, Greiver, Michelle, Moineddin, Rahim, Meaney, Christopher, White, David, Moazzam, Ambreen, Moore, Kieran M, Belanger, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890502/
https://www.ncbi.nlm.nih.gov/pubmed/24410794
http://dx.doi.org/10.1186/1471-2296-15-7
Descripción
Sumario:BACKGROUND: Hgb A1c levels may be higher in persons without diabetes of lower socio-economic status (SES) but evidence about this association is limited; there is therefore uncertainty about the inclusion of SES in clinical decision support tools informing the provision and frequency of Hgb A1c tests to screen for diabetes. We studied the association between neighborhood-level SES and Hgb A1c in a primary care population without diabetes. METHODS: This is a retrospective study using data routinely collected in the electronic medical records (EMRs) of forty six community-based family physicians in Toronto, Ontario. We analysed records from 4,870 patients without diabetes, age 45 and over, with at least one clinical encounter between January 1st 2009 and December 31st 2011 and one or more Hgb A1c report present in their chart during that time interval. Residential postal codes were used to assign neighborhood deprivation indices and income levels by quintiles. Covariates included elements known to be associated with an increase in the risk of incident diabetes: age, gender, family history of diabetes, body mass index, blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, and fasting blood glucose. RESULTS: The difference in mean Hgb A1c between highest and lowest income quintiles was -0.04% (p = 0.005, 95% CI -0.07% to -0.01%), and between least deprived and most deprived was -0.05% (p = 0.003, 95% CI -0.09% to -0.02%) for material deprivation and 0.02% (p = 0.2, 95% CI -0.06% to 0.01%) for social deprivation. After adjustment for covariates, a marginally statistically significant difference in Hgb A1c between highest and lowest SES quintile (p = 0.04) remained in the material deprivation model, but not in the other models. CONCLUSIONS: We found a small inverse relationship between Hgb A1c and the material aspects of SES; this was largely attenuated once we adjusted for diabetes risk factors, indicating that an independent contribution of SES to increasing Hgb A1c may be limited. This study does not support the inclusion of SES in clinical decision support tools that inform the use of Hgb A1c for diabetes screening.