Cargando…
Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation
BACKGROUND: Amblyomma cajennense F. is one of the best known and studied ticks in the New World because of its very wide distribution, its economical importance as pest of domestic ungulates, and its association with a variety of animal and human pathogens. Recent observations, however, have challen...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890524/ https://www.ncbi.nlm.nih.gov/pubmed/24320199 http://dx.doi.org/10.1186/1471-2148-13-267 |
_version_ | 1782299266880897024 |
---|---|
author | Beati, Lorenza Nava, Santiago Burkman, Erica J Barros-Battesti, Darci M Labruna, Marcelo B Guglielmone, Alberto A Cáceres, Abraham G Guzmán-Cornejo, Carmen M León, Renato Durden, Lance A Faccini, João LH |
author_facet | Beati, Lorenza Nava, Santiago Burkman, Erica J Barros-Battesti, Darci M Labruna, Marcelo B Guglielmone, Alberto A Cáceres, Abraham G Guzmán-Cornejo, Carmen M León, Renato Durden, Lance A Faccini, João LH |
author_sort | Beati, Lorenza |
collection | PubMed |
description | BACKGROUND: Amblyomma cajennense F. is one of the best known and studied ticks in the New World because of its very wide distribution, its economical importance as pest of domestic ungulates, and its association with a variety of animal and human pathogens. Recent observations, however, have challenged the taxonomic status of this tick and indicated that intraspecific cryptic speciation might be occurring. In the present study, we investigate the evolutionary and demographic history of this tick and examine its genetic structure based on the analyses of three mitochondrial (12SrDNA, d-loop, and COII) and one nuclear (ITS2) genes. Because A. cajennense is characterized by a typical trans-Amazonian distribution, lineage divergence dating is also performed to establish whether genetic diversity can be linked to dated vicariant events which shaped the topology of the Neotropics. RESULTS: Total evidence analyses of the concatenated mtDNA and nuclear + mtDNA datasets resulted in well-resolved and fully congruent reconstructions of the relationships within A. cajennense. The phylogenetic analyses consistently found A. cajennense to be monophyletic and to be separated into six genetic units defined by mutually exclusive haplotype compositions and habitat associations. Also, genetic divergence values showed that these lineages are as distinct from each other as recognized separate species of the same genus. The six clades are deeply split and node dating indicates that they started diverging in the middle-late Miocene. CONCLUSIONS: Behavioral differences and the results of laboratory cross-breeding experiments had already indicated that A. cajennense might be a complex of distinct taxonomic units. The combined and congruent mitochondrial and nuclear genetic evidence from this study reveals that A. cajennense is an assembly of six distinct species which have evolved separately from each other since at least 13.2 million years ago (Mya) in the earliest and 3.3 Mya in the latest lineages. The temporal and spatial diversification modes of the six lineages overlap the phylogeographical history of other organisms with similar extant trans-Amazonian distributions and are consistent with the present prevailing hypothesis that Neotropical diversity often finds its origins in the Miocene, after the Andean uplift changed the topology and consequently the climate and ecology of the Neotropics. |
format | Online Article Text |
id | pubmed-3890524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38905242014-01-15 Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation Beati, Lorenza Nava, Santiago Burkman, Erica J Barros-Battesti, Darci M Labruna, Marcelo B Guglielmone, Alberto A Cáceres, Abraham G Guzmán-Cornejo, Carmen M León, Renato Durden, Lance A Faccini, João LH BMC Evol Biol Research Article BACKGROUND: Amblyomma cajennense F. is one of the best known and studied ticks in the New World because of its very wide distribution, its economical importance as pest of domestic ungulates, and its association with a variety of animal and human pathogens. Recent observations, however, have challenged the taxonomic status of this tick and indicated that intraspecific cryptic speciation might be occurring. In the present study, we investigate the evolutionary and demographic history of this tick and examine its genetic structure based on the analyses of three mitochondrial (12SrDNA, d-loop, and COII) and one nuclear (ITS2) genes. Because A. cajennense is characterized by a typical trans-Amazonian distribution, lineage divergence dating is also performed to establish whether genetic diversity can be linked to dated vicariant events which shaped the topology of the Neotropics. RESULTS: Total evidence analyses of the concatenated mtDNA and nuclear + mtDNA datasets resulted in well-resolved and fully congruent reconstructions of the relationships within A. cajennense. The phylogenetic analyses consistently found A. cajennense to be monophyletic and to be separated into six genetic units defined by mutually exclusive haplotype compositions and habitat associations. Also, genetic divergence values showed that these lineages are as distinct from each other as recognized separate species of the same genus. The six clades are deeply split and node dating indicates that they started diverging in the middle-late Miocene. CONCLUSIONS: Behavioral differences and the results of laboratory cross-breeding experiments had already indicated that A. cajennense might be a complex of distinct taxonomic units. The combined and congruent mitochondrial and nuclear genetic evidence from this study reveals that A. cajennense is an assembly of six distinct species which have evolved separately from each other since at least 13.2 million years ago (Mya) in the earliest and 3.3 Mya in the latest lineages. The temporal and spatial diversification modes of the six lineages overlap the phylogeographical history of other organisms with similar extant trans-Amazonian distributions and are consistent with the present prevailing hypothesis that Neotropical diversity often finds its origins in the Miocene, after the Andean uplift changed the topology and consequently the climate and ecology of the Neotropics. BioMed Central 2013-12-09 /pmc/articles/PMC3890524/ /pubmed/24320199 http://dx.doi.org/10.1186/1471-2148-13-267 Text en Copyright © 2013 Beati et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Beati, Lorenza Nava, Santiago Burkman, Erica J Barros-Battesti, Darci M Labruna, Marcelo B Guglielmone, Alberto A Cáceres, Abraham G Guzmán-Cornejo, Carmen M León, Renato Durden, Lance A Faccini, João LH Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation |
title | Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation |
title_full | Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation |
title_fullStr | Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation |
title_full_unstemmed | Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation |
title_short | Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation |
title_sort | amblyomma cajennense (fabricius, 1787) (acari: ixodidae), the cayenne tick: phylogeography and evidence for allopatric speciation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890524/ https://www.ncbi.nlm.nih.gov/pubmed/24320199 http://dx.doi.org/10.1186/1471-2148-13-267 |
work_keys_str_mv | AT beatilorenza amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT navasantiago amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT burkmanericaj amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT barrosbattestidarcim amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT labrunamarcelob amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT guglielmonealbertoa amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT caceresabrahamg amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT guzmancornejocarmenm amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT leonrenato amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT durdenlancea amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation AT faccinijoaolh amblyommacajennensefabricius1787acariixodidaethecayennetickphylogeographyandevidenceforallopatricspeciation |