Cargando…
Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer
BACKGROUND: Edwardsiella tarda is an enterobacterium which causes edwardsiellosis, a fatal disease of cultured fishes such as red sea bream, eel, and flounder. Preventing the occurrence of E. tarda infection has thus been an important issue in aquaculture. E. tarda has been isolated from other anima...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890536/ https://www.ncbi.nlm.nih.gov/pubmed/24053667 http://dx.doi.org/10.1186/1471-2164-14-642 |
_version_ | 1782299269613486080 |
---|---|
author | Nakamura, Yoji Takano, Tomokazu Yasuike, Motoshige Sakai, Takamitsu Matsuyama, Tomomasa Sano, Motohiko |
author_facet | Nakamura, Yoji Takano, Tomokazu Yasuike, Motoshige Sakai, Takamitsu Matsuyama, Tomomasa Sano, Motohiko |
author_sort | Nakamura, Yoji |
collection | PubMed |
description | BACKGROUND: Edwardsiella tarda is an enterobacterium which causes edwardsiellosis, a fatal disease of cultured fishes such as red sea bream, eel, and flounder. Preventing the occurrence of E. tarda infection has thus been an important issue in aquaculture. E. tarda has been isolated from other animals and from many environments; however, the relationship between the genotype and evolutionary process of this pathogen is not fully understood. To clarify this relationship, we sequenced and compared the genomes of pathogenic and non-pathogenic E. tarda strains isolated from fish, human, and eel pond using next-generation sequencing technology. RESULTS: Eight strains of E. tarda were sequenced with high accuracy (>99.9%) with coverages from 50- to 400-fold. The obtained reads were mapped to a public reference genome. By comparing single nucleotide and insertion/deletion polymorphisms, we found that an attenuated strain of E. tarda had a loss-of-function mutation in a gene related to the type III secretion system (T3SS), suggesting that this gene is involved in the virulence of E. tarda. A comprehensive gene comparison indicated that fish pathogenic strains possessed a type VI secretion system (T6SS) and pilus assembly genes in addition to the T3SS. Moreover, we found that an E. tarda strain isolated from red sea bream harbored two pathogenicity islands of T3SS and T6SS, which were absent in other strains. In particular, this T3SS was homologous to the locus of enterocyte effacement (LEE) in enteropathogenic and enterohemorrhagic Escherichia coli. Evolutionary analysis suggested that this locus, here named Et-LEE (E. tarda LEE), was introgressed into the E. tarda genome through horizontal transfer. CONCLUSIONS: We found significant differences in the presence/absence of virulence-related genes among E. tarda strains, reflecting their evolutionary relationship. In particular, a single genotype previously proposed for fish-pathogenic strains may be further divided into two subgroups. Furthermore, the current study demonstrated, for the first time, that a fish pathogenic bacterium carried a LEE-like pathogenicity island which was previously reported only in zoonotic pathogenic enterobacteria. These findings will contribute to the exploration of strain-specific drug targets against E. tarda in aquafarms, while also shedding light on the evolution of pathogenesis in enterobacteria. |
format | Online Article Text |
id | pubmed-3890536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38905362014-01-15 Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer Nakamura, Yoji Takano, Tomokazu Yasuike, Motoshige Sakai, Takamitsu Matsuyama, Tomomasa Sano, Motohiko BMC Genomics Research Article BACKGROUND: Edwardsiella tarda is an enterobacterium which causes edwardsiellosis, a fatal disease of cultured fishes such as red sea bream, eel, and flounder. Preventing the occurrence of E. tarda infection has thus been an important issue in aquaculture. E. tarda has been isolated from other animals and from many environments; however, the relationship between the genotype and evolutionary process of this pathogen is not fully understood. To clarify this relationship, we sequenced and compared the genomes of pathogenic and non-pathogenic E. tarda strains isolated from fish, human, and eel pond using next-generation sequencing technology. RESULTS: Eight strains of E. tarda were sequenced with high accuracy (>99.9%) with coverages from 50- to 400-fold. The obtained reads were mapped to a public reference genome. By comparing single nucleotide and insertion/deletion polymorphisms, we found that an attenuated strain of E. tarda had a loss-of-function mutation in a gene related to the type III secretion system (T3SS), suggesting that this gene is involved in the virulence of E. tarda. A comprehensive gene comparison indicated that fish pathogenic strains possessed a type VI secretion system (T6SS) and pilus assembly genes in addition to the T3SS. Moreover, we found that an E. tarda strain isolated from red sea bream harbored two pathogenicity islands of T3SS and T6SS, which were absent in other strains. In particular, this T3SS was homologous to the locus of enterocyte effacement (LEE) in enteropathogenic and enterohemorrhagic Escherichia coli. Evolutionary analysis suggested that this locus, here named Et-LEE (E. tarda LEE), was introgressed into the E. tarda genome through horizontal transfer. CONCLUSIONS: We found significant differences in the presence/absence of virulence-related genes among E. tarda strains, reflecting their evolutionary relationship. In particular, a single genotype previously proposed for fish-pathogenic strains may be further divided into two subgroups. Furthermore, the current study demonstrated, for the first time, that a fish pathogenic bacterium carried a LEE-like pathogenicity island which was previously reported only in zoonotic pathogenic enterobacteria. These findings will contribute to the exploration of strain-specific drug targets against E. tarda in aquafarms, while also shedding light on the evolution of pathogenesis in enterobacteria. BioMed Central 2013-09-22 /pmc/articles/PMC3890536/ /pubmed/24053667 http://dx.doi.org/10.1186/1471-2164-14-642 Text en Copyright © 2013 Nakamura et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nakamura, Yoji Takano, Tomokazu Yasuike, Motoshige Sakai, Takamitsu Matsuyama, Tomomasa Sano, Motohiko Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer |
title | Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer |
title_full | Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer |
title_fullStr | Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer |
title_full_unstemmed | Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer |
title_short | Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer |
title_sort | comparative genomics reveals that a fish pathogenic bacterium edwardsiella tarda has acquired the locus of enterocyte effacement (lee) through horizontal gene transfer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890536/ https://www.ncbi.nlm.nih.gov/pubmed/24053667 http://dx.doi.org/10.1186/1471-2164-14-642 |
work_keys_str_mv | AT nakamurayoji comparativegenomicsrevealsthatafishpathogenicbacteriumedwardsiellatardahasacquiredthelocusofenterocyteeffacementleethroughhorizontalgenetransfer AT takanotomokazu comparativegenomicsrevealsthatafishpathogenicbacteriumedwardsiellatardahasacquiredthelocusofenterocyteeffacementleethroughhorizontalgenetransfer AT yasuikemotoshige comparativegenomicsrevealsthatafishpathogenicbacteriumedwardsiellatardahasacquiredthelocusofenterocyteeffacementleethroughhorizontalgenetransfer AT sakaitakamitsu comparativegenomicsrevealsthatafishpathogenicbacteriumedwardsiellatardahasacquiredthelocusofenterocyteeffacementleethroughhorizontalgenetransfer AT matsuyamatomomasa comparativegenomicsrevealsthatafishpathogenicbacteriumedwardsiellatardahasacquiredthelocusofenterocyteeffacementleethroughhorizontalgenetransfer AT sanomotohiko comparativegenomicsrevealsthatafishpathogenicbacteriumedwardsiellatardahasacquiredthelocusofenterocyteeffacementleethroughhorizontalgenetransfer |