Cargando…
Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta
BACKGROUND: Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890553/ https://www.ncbi.nlm.nih.gov/pubmed/24393121 http://dx.doi.org/10.1186/1471-2164-15-11 |
_version_ | 1782299273582346240 |
---|---|
author | Sui, Yi Li, Bo Shi, Jinfeng Chen, Mingsheng |
author_facet | Sui, Yi Li, Bo Shi, Jinfeng Chen, Mingsheng |
author_sort | Sui, Yi |
collection | PubMed |
description | BACKGROUND: Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. RESULTS: Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement. CONCLUSIONS: Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta. |
format | Online Article Text |
id | pubmed-3890553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38905532014-01-15 Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta Sui, Yi Li, Bo Shi, Jinfeng Chen, Mingsheng BMC Genomics Research Article BACKGROUND: Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. RESULTS: Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement. CONCLUSIONS: Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta. BioMed Central 2014-01-06 /pmc/articles/PMC3890553/ /pubmed/24393121 http://dx.doi.org/10.1186/1471-2164-15-11 Text en Copyright © 2014 Sui et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Sui, Yi Li, Bo Shi, Jinfeng Chen, Mingsheng Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta |
title | Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta |
title_full | Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta |
title_fullStr | Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta |
title_full_unstemmed | Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta |
title_short | Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta |
title_sort | genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid oryza minuta |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890553/ https://www.ncbi.nlm.nih.gov/pubmed/24393121 http://dx.doi.org/10.1186/1471-2164-15-11 |
work_keys_str_mv | AT suiyi genomicregulatoryandepigeneticmechanismsunderlyingduplicatedgeneevolutioninthenaturalallotetraploidoryzaminuta AT libo genomicregulatoryandepigeneticmechanismsunderlyingduplicatedgeneevolutioninthenaturalallotetraploidoryzaminuta AT shijinfeng genomicregulatoryandepigeneticmechanismsunderlyingduplicatedgeneevolutioninthenaturalallotetraploidoryzaminuta AT chenmingsheng genomicregulatoryandepigeneticmechanismsunderlyingduplicatedgeneevolutioninthenaturalallotetraploidoryzaminuta |