Cargando…

Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol

Abstract. We report initial results from an ongoing effort to build a library of DNA barcode sequences for Dutch spiders and investigate the utility of museum collections as a source of specimens for barcoding spiders. Source material for the library comes from a combination of specimens freshly col...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Jeremy A., Beentjes, Kevin K., van Helsdingen, Peter, IJland, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pensoft Publishers 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890681/
https://www.ncbi.nlm.nih.gov/pubmed/24453561
http://dx.doi.org/10.3897/zookeys.365.5787
Descripción
Sumario:Abstract. We report initial results from an ongoing effort to build a library of DNA barcode sequences for Dutch spiders and investigate the utility of museum collections as a source of specimens for barcoding spiders. Source material for the library comes from a combination of specimens freshly collected in the field specifically for this project and museum specimens collected in the past. For the museum specimens, we focus on 31 species that have been frequently collected over the past several decades. A series of progressively older specimens representing these 31 species were selected for DNA barcoding. Based on the pattern of sequencing successes and failures, we find that smaller-bodied species expire before larger-bodied species as tissue sources for single-PCR standard DNA barcoding. Body size and age of oldest successful DNA barcode are significantly correlated after factoring out phylogenetic effects using independent contrasts analysis. We found some evidence that extracted DNA concentration is correlated with body size and inversely correlated with time since collection, but these relationships are neither strong nor consistent. DNA was extracted from all specimens using standard destructive techniques involving the removal and grinding of tissue. A subset of specimens was selected to evaluate nondestructive extraction. Nondestructive extractions significantly extended the DNA barcoding shelf life of museum specimens, especially small-bodied species, and yielded higher DNA concentrations compared to destructive extractions. All primary data are publically available through a Dryad archive and the Barcode of Life database.