Cargando…

Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea)

Abstract. Empidoidea is one of the largest extant lineages of flies, but phylogenetic relationships among species of this group are poorly investigated and global diversity remains scarcely assessed. In this context, one of the most enigmatic empidoid families is Hybotidae. Within the framework of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagy, Zoltán T., Sonet, Gontran, Mortelmans, Jonas, Vandewynkel, Camille, Grootaert, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pensoft Publishers 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890682/
https://www.ncbi.nlm.nih.gov/pubmed/24453562
http://dx.doi.org/10.3897/zookeys.365.6070
Descripción
Sumario:Abstract. Empidoidea is one of the largest extant lineages of flies, but phylogenetic relationships among species of this group are poorly investigated and global diversity remains scarcely assessed. In this context, one of the most enigmatic empidoid families is Hybotidae. Within the framework of a pilot study, we barcoded 339 specimens of Old World hybotids belonging to 164 species and 22 genera (plus two Empis as outgroups) and attempted to evaluate whether patterns of intra- and interspecific divergences match the current taxonomy. We used a large sampling of diverse Hybotidae. The material came from the Palaearctic (Belgium, France, Portugal and Russian Caucasus), the Afrotropic (Democratic Republic of the Congo) and the Oriental realms (Singapore and Thailand). Thereby, we optimized lab protocols for barcoding hybotids. Although DNA barcodes generally well distinguished recognized taxa, the study also revealed a number of unexpected phenomena: e.g., undescribed taxa found within morphologically very similar or identical specimens, especially when geographic distance was large; some morphologically distinct species showed no genetic divergence; or different pattern of intraspecific divergence between populations or closely related species. Using COI sequences and simple Neighbour-Joining tree reconstructions, the monophyly of many species- and genus-level taxa was well supported, but more inclusive taxonomical levels did not receive significant bootstrap support. We conclude that in hybotids DNA barcoding might be well used to identify species, when two main constraints are considered. First, incomplete barcoding libraries hinder efficient (correct) identification. Therefore, extra efforts are needed to increase the representation of hybotids in these databases. Second, the spatial scale of sampling has to be taken into account, and especially for widespread species or species complexes with unclear taxonomy, an integrative approach has to be used to clarify species boundaries and identities.