Cargando…

The Generalization Error Bound for the Multiclass Analytical Center Classifier

This paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single class from all the others. Its generaliz...

Descripción completa

Detalles Bibliográficos
Autores principales: Fanzi, Zeng, Xiaolong, Ma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891430/
https://www.ncbi.nlm.nih.gov/pubmed/24459436
http://dx.doi.org/10.1155/2013/574748
Descripción
Sumario:This paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single class from all the others. Its generalization error upper bound is proved theoretically. The experiments on benchmark datasets validate the generalization performance of MACM.