Cargando…
DNA methylation analysis of murine hematopoietic side population cells during aging
Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cel...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891692/ https://www.ncbi.nlm.nih.gov/pubmed/23949429 http://dx.doi.org/10.4161/epi.26017 |
_version_ | 1782299414311731200 |
---|---|
author | Taiwo, Oluwatosin Wilson, Gareth A Emmett, Warren Morris, Tiffany Bonnet, Dominique Schuster, Eugene Adejumo, Tomas Beck, Stephan Pearce, Daniel J |
author_facet | Taiwo, Oluwatosin Wilson, Gareth A Emmett, Warren Morris, Tiffany Bonnet, Dominique Schuster, Eugene Adejumo, Tomas Beck, Stephan Pearce, Daniel J |
author_sort | Taiwo, Oluwatosin |
collection | PubMed |
description | Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system. Hematopoietic stem cells (HSCs) were enriched for via Hoechst exclusion activity (SP-HSC) from young, medium-aged and old mice and subjected to comprehensive, global methylome (MeDIP-seq) analysis. With age, we observed a global loss of DNA methylation of approximately 5%, but an increase in methylation at some CpG islands. Just over 100 significant (FDR < 0.2) aging-specific differentially methylated regions (aDMRs) were identified, which are surprisingly few considering the profound age-based changes that occur in HSC biology. Interestingly, the polycomb repressive complex -2 (PCRC2) target genes Kiss1r, Nav2 and Hsf4 were hypermethylated with age. The promoter for the Sdpr gene was determined to be progressively hypomethylated with age. This occurred concurrently with an increase in gene expression with age. To explore this relationship further, we cultured isolated SP-HSC in the presence of 5-aza-deoxycytdine and demonstrated a negative correlation between Sdpr promoter methylation and gene expression. We report that DNA methylation patterns are well preserved during hematopoietic stem cell aging, confirm that PCRC2 targets are increasingly methylated with age, and suggest that SDPR expression changes with age in HSCs may be regulated via age-based alterations in DNA methylation. |
format | Online Article Text |
id | pubmed-3891692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Landes Bioscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-38916922014-01-28 DNA methylation analysis of murine hematopoietic side population cells during aging Taiwo, Oluwatosin Wilson, Gareth A Emmett, Warren Morris, Tiffany Bonnet, Dominique Schuster, Eugene Adejumo, Tomas Beck, Stephan Pearce, Daniel J Epigenetics Research Paper Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system. Hematopoietic stem cells (HSCs) were enriched for via Hoechst exclusion activity (SP-HSC) from young, medium-aged and old mice and subjected to comprehensive, global methylome (MeDIP-seq) analysis. With age, we observed a global loss of DNA methylation of approximately 5%, but an increase in methylation at some CpG islands. Just over 100 significant (FDR < 0.2) aging-specific differentially methylated regions (aDMRs) were identified, which are surprisingly few considering the profound age-based changes that occur in HSC biology. Interestingly, the polycomb repressive complex -2 (PCRC2) target genes Kiss1r, Nav2 and Hsf4 were hypermethylated with age. The promoter for the Sdpr gene was determined to be progressively hypomethylated with age. This occurred concurrently with an increase in gene expression with age. To explore this relationship further, we cultured isolated SP-HSC in the presence of 5-aza-deoxycytdine and demonstrated a negative correlation between Sdpr promoter methylation and gene expression. We report that DNA methylation patterns are well preserved during hematopoietic stem cell aging, confirm that PCRC2 targets are increasingly methylated with age, and suggest that SDPR expression changes with age in HSCs may be regulated via age-based alterations in DNA methylation. Landes Bioscience 2013-10-01 2013-08-15 /pmc/articles/PMC3891692/ /pubmed/23949429 http://dx.doi.org/10.4161/epi.26017 Text en Copyright © 2013 Landes Bioscience http://creativecommons.org/licenses/by/3.0/ This is an open-access article licensed under a Creative Commons Attribution 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Research Paper Taiwo, Oluwatosin Wilson, Gareth A Emmett, Warren Morris, Tiffany Bonnet, Dominique Schuster, Eugene Adejumo, Tomas Beck, Stephan Pearce, Daniel J DNA methylation analysis of murine hematopoietic side population cells during aging |
title | DNA methylation analysis of murine hematopoietic side population cells during aging |
title_full | DNA methylation analysis of murine hematopoietic side population cells during aging |
title_fullStr | DNA methylation analysis of murine hematopoietic side population cells during aging |
title_full_unstemmed | DNA methylation analysis of murine hematopoietic side population cells during aging |
title_short | DNA methylation analysis of murine hematopoietic side population cells during aging |
title_sort | dna methylation analysis of murine hematopoietic side population cells during aging |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891692/ https://www.ncbi.nlm.nih.gov/pubmed/23949429 http://dx.doi.org/10.4161/epi.26017 |
work_keys_str_mv | AT taiwooluwatosin dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT wilsongaretha dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT emmettwarren dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT morristiffany dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT bonnetdominique dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT schustereugene dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT adejumotomas dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT beckstephan dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging AT pearcedanielj dnamethylationanalysisofmurinehematopoieticsidepopulationcellsduringaging |