Cargando…

Genome-Wide Analysis of DNA Methylation in Five Tissues of Zhikong Scallop, Chlamys farreri

DNA methylation plays a vital role in tissue development and differentiation in eukaryotes. Epigenetic studies have been seldom conducted in the extremely diverse and evolutionarily highly successful bilaterian lineage Mollusca. In the present study, we conducted the genome-wide profiling of DNA met...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yan, Hou, Rui, Fu, Xiaoteng, Sun, Changsen, Wang, Shi, Wang, Chen, Li, Ning, Zhang, Lingling, Bao, Zhenmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891877/
https://www.ncbi.nlm.nih.gov/pubmed/24454962
http://dx.doi.org/10.1371/journal.pone.0086232
Descripción
Sumario:DNA methylation plays a vital role in tissue development and differentiation in eukaryotes. Epigenetic studies have been seldom conducted in the extremely diverse and evolutionarily highly successful bilaterian lineage Mollusca. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of a bivalve mollusc, Chlamys farreri using the methylation-sensitive amplification polymorphism (MSAP) technique. The methylation levels were quite similar among tissues, ranging from 20.9% to 21.7%. CG methylation was the dominant type (14.9%–16.5%) in the C. farreri genome, but CHG methylation also accounted for a substantial fraction of total methylation (5.1%–6.3%). Relatively high methylation diversity was observed within tissues. Methylation differentiation between tissues was evaluated and 460 tissue-specific epiloci were identified. Kidney differs from the other tissues in DNA methylation profiles. Our study presents the first look at the tissue-specific DNA methylation patterns in a bivalve mollusc and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in bivalves.