Cargando…
Probabilistic grammatical model for helix‐helix contact site classification
BACKGROUND: Hidden Markov Models power many state‐of‐the‐art tools in the field of protein bioinformatics. While excelling in their tasks, these methods of protein analysis do not convey directly information on medium‐ and long‐range residue‐residue interactions. This requires an expressive power of...
Autores principales: | Dyrka, Witold, Nebel, Jean‐Christophe, Kotulska, Malgorzata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892132/ https://www.ncbi.nlm.nih.gov/pubmed/24350601 http://dx.doi.org/10.1186/1748-7188-8-31 |
Ejemplares similares
-
Predicting helix–helix interactions from residue contacts in membrane proteins
por: Lo, Allan, et al.
Publicado: (2009) -
A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean
por: Hudson, Karen A., et al.
Publicado: (2015) -
A stochastic context free grammar based framework for analysis of protein sequences
por: Dyrka, Witold, et al.
Publicado: (2009) -
Estimating probabilistic context-free grammars for proteins using contact map constraints
por: Dyrka, Witold, et al.
Publicado: (2019) -
Combinatorial targeting of ribbon–helix–helix artificial transcription factors to chimeric recognition sites
por: Zampini, Massimiliano, et al.
Publicado: (2012)