Cargando…
LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo
Prostate cancer (PCa) is a common hormone-dependent malignancy associated with the development of skeletal metastases. This is due to the increased expression of a number of growth factors, cytokines, and proteases which collectively drive the metastatic cascade in general and increased propensity t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Science Inc
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892794/ https://www.ncbi.nlm.nih.gov/pubmed/24403228 http://dx.doi.org/10.1002/cam4.111 |
_version_ | 1782299582697308160 |
---|---|
author | Rabbani, Shafaat A Arakelian, Ani Farookhi, Riaz |
author_facet | Rabbani, Shafaat A Arakelian, Ani Farookhi, Riaz |
author_sort | Rabbani, Shafaat A |
collection | PubMed |
description | Prostate cancer (PCa) is a common hormone-dependent malignancy associated with the development of skeletal metastases. This is due to the increased expression of a number of growth factors, cytokines, and proteases which collectively drive the metastatic cascade in general and increased propensity to develop skeletal metastasis in particular. While a number of signaling pathways have been implicated in PCa progression, the highly complex wnt/β-catenin pathway is unique due to its ability to regulate gene expression, cell invasion, migration, survival, proliferation, and differentiation to contribute in the initiation and progression of PCa. Members of the wnt family bind to the Frizzle proteins or lipoprotein-related receptor proteins 5, 6 (LRP5, -6) to activate this key pathway. In the current study, we have investigated the role of wnt/β-catenin pathway in PCa progression, skeletal metastasis, and gene expression using the dominant negative plasmid of LRP5 (DN-LRP5) and human PCa cells PC-3. Inactivation of LRP5 resulted in mesenchymal to epithelial shift, lack of translocation of β-catenin to cell surface, increased tumor cell proliferation, decreased colony formation, migration and invasion in vitro. These effects were attributed to decreased expression of pro-invasive and pro-metastatic genes. In in vivo studies, PC-3-DN-LRP5 cells developed significantly smaller tumors and a marked decrease in skeletal lesion area and number as determined by X-ray, micro (μ) CT and histological analysis. Collectively results from these studies demonstrate the dominant role of this key pathway in PCa growth and skeletal metastasis and its potential as a viable therapeutic target. |
format | Online Article Text |
id | pubmed-3892794 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Science Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-38927942014-01-22 LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo Rabbani, Shafaat A Arakelian, Ani Farookhi, Riaz Cancer Med Cancer Biology Prostate cancer (PCa) is a common hormone-dependent malignancy associated with the development of skeletal metastases. This is due to the increased expression of a number of growth factors, cytokines, and proteases which collectively drive the metastatic cascade in general and increased propensity to develop skeletal metastasis in particular. While a number of signaling pathways have been implicated in PCa progression, the highly complex wnt/β-catenin pathway is unique due to its ability to regulate gene expression, cell invasion, migration, survival, proliferation, and differentiation to contribute in the initiation and progression of PCa. Members of the wnt family bind to the Frizzle proteins or lipoprotein-related receptor proteins 5, 6 (LRP5, -6) to activate this key pathway. In the current study, we have investigated the role of wnt/β-catenin pathway in PCa progression, skeletal metastasis, and gene expression using the dominant negative plasmid of LRP5 (DN-LRP5) and human PCa cells PC-3. Inactivation of LRP5 resulted in mesenchymal to epithelial shift, lack of translocation of β-catenin to cell surface, increased tumor cell proliferation, decreased colony formation, migration and invasion in vitro. These effects were attributed to decreased expression of pro-invasive and pro-metastatic genes. In in vivo studies, PC-3-DN-LRP5 cells developed significantly smaller tumors and a marked decrease in skeletal lesion area and number as determined by X-ray, micro (μ) CT and histological analysis. Collectively results from these studies demonstrate the dominant role of this key pathway in PCa growth and skeletal metastasis and its potential as a viable therapeutic target. Blackwell Science Inc 2013-10 2013-09-05 /pmc/articles/PMC3892794/ /pubmed/24403228 http://dx.doi.org/10.1002/cam4.111 Text en © 2013 Published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Cancer Biology Rabbani, Shafaat A Arakelian, Ani Farookhi, Riaz LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
title | LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
title_full | LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
title_fullStr | LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
title_full_unstemmed | LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
title_short | LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
title_sort | lrp5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo |
topic | Cancer Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892794/ https://www.ncbi.nlm.nih.gov/pubmed/24403228 http://dx.doi.org/10.1002/cam4.111 |
work_keys_str_mv | AT rabbanishafaata lrp5knockdowneffectonprostatecancerinvasiongrowthandskeletalmetastasisinvitroandinvivo AT arakelianani lrp5knockdowneffectonprostatecancerinvasiongrowthandskeletalmetastasisinvitroandinvivo AT farookhiriaz lrp5knockdowneffectonprostatecancerinvasiongrowthandskeletalmetastasisinvitroandinvivo |