Cargando…
Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges
The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892855/ https://www.ncbi.nlm.nih.gov/pubmed/24351646 http://dx.doi.org/10.3390/s131217472 |
_version_ | 1782299596615057408 |
---|---|
author | Banaee, Hadi Ahmed, Mobyen Uddin Loutfi, Amy |
author_facet | Banaee, Hadi Ahmed, Mobyen Uddin Loutfi, Amy |
author_sort | Banaee, Hadi |
collection | PubMed |
description | The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems. |
format | Online Article Text |
id | pubmed-3892855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-38928552014-01-16 Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges Banaee, Hadi Ahmed, Mobyen Uddin Loutfi, Amy Sensors (Basel) Review The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems. Molecular Diversity Preservation International (MDPI) 2013-12-17 /pmc/articles/PMC3892855/ /pubmed/24351646 http://dx.doi.org/10.3390/s131217472 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Banaee, Hadi Ahmed, Mobyen Uddin Loutfi, Amy Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges |
title | Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges |
title_full | Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges |
title_fullStr | Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges |
title_full_unstemmed | Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges |
title_short | Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges |
title_sort | data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892855/ https://www.ncbi.nlm.nih.gov/pubmed/24351646 http://dx.doi.org/10.3390/s131217472 |
work_keys_str_mv | AT banaeehadi dataminingforwearablesensorsinhealthmonitoringsystemsareviewofrecenttrendsandchallenges AT ahmedmobyenuddin dataminingforwearablesensorsinhealthmonitoringsystemsareviewofrecenttrendsandchallenges AT loutfiamy dataminingforwearablesensorsinhealthmonitoringsystemsareviewofrecenttrendsandchallenges |