Cargando…
Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study
Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892864/ https://www.ncbi.nlm.nih.gov/pubmed/24304640 http://dx.doi.org/10.3390/s131216625 |
_version_ | 1782299598649294848 |
---|---|
author | Santonico, Marco Pennazza, Giorgio Grasso, Simone D'Amico, Arnaldo Bizzarri, Mariano |
author_facet | Santonico, Marco Pennazza, Giorgio Grasso, Simone D'Amico, Arnaldo Bizzarri, Mariano |
author_sort | Santonico, Marco |
collection | PubMed |
description | Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1–7 ppm) and as a liquid sensor array (concentration range 73–98 μM). |
format | Online Article Text |
id | pubmed-3892864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-38928642014-01-16 Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study Santonico, Marco Pennazza, Giorgio Grasso, Simone D'Amico, Arnaldo Bizzarri, Mariano Sensors (Basel) Article Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1–7 ppm) and as a liquid sensor array (concentration range 73–98 μM). Molecular Diversity Preservation International (MDPI) 2013-12-04 /pmc/articles/PMC3892864/ /pubmed/24304640 http://dx.doi.org/10.3390/s131216625 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Santonico, Marco Pennazza, Giorgio Grasso, Simone D'Amico, Arnaldo Bizzarri, Mariano Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study |
title | Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study |
title_full | Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study |
title_fullStr | Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study |
title_full_unstemmed | Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study |
title_short | Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study |
title_sort | design and test of a biosensor-based multisensorial system: a proof of concept study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892864/ https://www.ncbi.nlm.nih.gov/pubmed/24304640 http://dx.doi.org/10.3390/s131216625 |
work_keys_str_mv | AT santonicomarco designandtestofabiosensorbasedmultisensorialsystemaproofofconceptstudy AT pennazzagiorgio designandtestofabiosensorbasedmultisensorialsystemaproofofconceptstudy AT grassosimone designandtestofabiosensorbasedmultisensorialsystemaproofofconceptstudy AT damicoarnaldo designandtestofabiosensorbasedmultisensorialsystemaproofofconceptstudy AT bizzarrimariano designandtestofabiosensorbasedmultisensorialsystemaproofofconceptstudy |