Cargando…
Reversible Rings with Involutions and Some Minimalities
In continuation of the recent developments on extended reversibilities on rings, we initiate here a study on reversible rings with involutions, or, in short, ∗-reversible rings. These rings are symmetric, reversible, reflexive, and semicommutative. In this note we will study some properties and exam...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893010/ https://www.ncbi.nlm.nih.gov/pubmed/24489510 http://dx.doi.org/10.1155/2013/650702 |
Sumario: | In continuation of the recent developments on extended reversibilities on rings, we initiate here a study on reversible rings with involutions, or, in short, ∗-reversible rings. These rings are symmetric, reversible, reflexive, and semicommutative. In this note we will study some properties and examples of ∗-reversible rings. It is proved here that the polynomial rings of ∗-reversible rings may not be ∗-reversible. A criterion for rings which cannot adhere to any involution is developed and it is observed that a minimal noninvolutary ring is of order 4 and that a minimal noncommutative ∗-reversible ring is of order 16. |
---|