Cargando…
Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation
Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is nec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893211/ https://www.ncbi.nlm.nih.gov/pubmed/24454867 http://dx.doi.org/10.1371/journal.pone.0085439 |
_version_ | 1782299642930659328 |
---|---|
author | Zhang, Beibei Shimada, Yasuhito Kuroyanagi, Junya Umemoto, Noriko Nishimura, Yuhei Tanaka, Toshio |
author_facet | Zhang, Beibei Shimada, Yasuhito Kuroyanagi, Junya Umemoto, Noriko Nishimura, Yuhei Tanaka, Toshio |
author_sort | Zhang, Beibei |
collection | PubMed |
description | Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs. |
format | Online Article Text |
id | pubmed-3893211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38932112014-01-21 Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation Zhang, Beibei Shimada, Yasuhito Kuroyanagi, Junya Umemoto, Noriko Nishimura, Yuhei Tanaka, Toshio PLoS One Research Article Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs. Public Library of Science 2014-01-15 /pmc/articles/PMC3893211/ /pubmed/24454867 http://dx.doi.org/10.1371/journal.pone.0085439 Text en © 2014 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhang, Beibei Shimada, Yasuhito Kuroyanagi, Junya Umemoto, Noriko Nishimura, Yuhei Tanaka, Toshio Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation |
title | Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation |
title_full | Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation |
title_fullStr | Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation |
title_full_unstemmed | Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation |
title_short | Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation |
title_sort | quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893211/ https://www.ncbi.nlm.nih.gov/pubmed/24454867 http://dx.doi.org/10.1371/journal.pone.0085439 |
work_keys_str_mv | AT zhangbeibei quantitativephenotypingbasedinvivochemicalscreeninginazebrafishmodelofleukemiastemcellxenotransplantation AT shimadayasuhito quantitativephenotypingbasedinvivochemicalscreeninginazebrafishmodelofleukemiastemcellxenotransplantation AT kuroyanagijunya quantitativephenotypingbasedinvivochemicalscreeninginazebrafishmodelofleukemiastemcellxenotransplantation AT umemotonoriko quantitativephenotypingbasedinvivochemicalscreeninginazebrafishmodelofleukemiastemcellxenotransplantation AT nishimurayuhei quantitativephenotypingbasedinvivochemicalscreeninginazebrafishmodelofleukemiastemcellxenotransplantation AT tanakatoshio quantitativephenotypingbasedinvivochemicalscreeninginazebrafishmodelofleukemiastemcellxenotransplantation |