Cargando…

The problem of morphogenesis: unscripted biophysical control systems in plants

The relative simplicity of plant developmental systems, having evolved within the universal constraints imposed by the plant cell wall, may allow us to outline a consistent developmental narrative that is not currently possible in the animal kingdom. In this article, I discuss three aspects of the d...

Descripción completa

Detalles Bibliográficos
Autor principal: Lintilhac, Philip M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893470/
https://www.ncbi.nlm.nih.gov/pubmed/23846861
http://dx.doi.org/10.1007/s00709-013-0522-y
Descripción
Sumario:The relative simplicity of plant developmental systems, having evolved within the universal constraints imposed by the plant cell wall, may allow us to outline a consistent developmental narrative that is not currently possible in the animal kingdom. In this article, I discuss three aspects of the development of the mature form in plants, approaching them in terms of the role played by the biophysics and mechanics of the cell wall during growth. First, I discuss axis extension in terms of a loss of stability-based model of cell wall stress relaxation and I introduce the possibility that cell wall stress relaxation can be modeled as a binary switch. Second, I consider meristem shape and surface conformation as a controlling element in the morphogenetic circuitry of plant organogenesis at the apex. Third, I approach the issue of reproductive differentiation and propose that the multicellular sporangium, a universal feature of land plants, acts as a stress–mechanical lens, focusing growth-induced stresses to create a geometrically precise mechanical singularity that can serve as an inducing developmental signal triggering the initiation of reproductive differentiation. Lastly, I offer these three examples of biophysically integrated control processes as entry points into a narrative that provides an independent, nongenetic context for understanding the evolution of the apoplast and the morphogenetic ontogeny of multicellular land plants.