Cargando…

Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) we...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jin, Chen, Jun, Sun, Hongyu, Qiu, Xiaozhong, Mou, Yongchao, Liu, Zhiqiang, Zhao, Yuwei, Li, Xia, Han, Yao, Duan, Cuimi, Tang, Rongyu, Wang, Chunlan, Zhong, Wen, Liu, Jie, Luo, Ying, (Mengqiu) Xing, Malcolm, Wang, Changyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893643/
https://www.ncbi.nlm.nih.gov/pubmed/24429673
http://dx.doi.org/10.1038/srep03733
Descripción
Sumario:Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction.