Cargando…
Identification of proteins that interact with alpha A-crystallin using a human proteome microarray
PURPOSE: To identify proteins interacting with alpha A-crystallin (CRYAA) and to investigate the potential role that these protein interactions play in the function of CRYAA using a human proteome (HuProt) microarray. METHODS: The active full-length CRYAA protein corresponding to amino acids 1–173 o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Vision
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893783/ https://www.ncbi.nlm.nih.gov/pubmed/24453475 |
_version_ | 1782299750359367680 |
---|---|
author | Fan, Qi Huang, Lv-Zhen Zhu, Xiang-Jia Zhang, Ke-Ke Ye, Hong-Fei Luo, Yi Sun, Xing-Huai Zhou, Peng Lu, Yi |
author_facet | Fan, Qi Huang, Lv-Zhen Zhu, Xiang-Jia Zhang, Ke-Ke Ye, Hong-Fei Luo, Yi Sun, Xing-Huai Zhou, Peng Lu, Yi |
author_sort | Fan, Qi |
collection | PubMed |
description | PURPOSE: To identify proteins interacting with alpha A-crystallin (CRYAA) and to investigate the potential role that these protein interactions play in the function of CRYAA using a human proteome (HuProt) microarray. METHODS: The active full-length CRYAA protein corresponding to amino acids 1–173 of CRYAA was recombined. A HuProt microarray composed of 17,225 human full-length proteins with N-terminal glutathione S-transferase (GST) tags was used to identify protein–protein interactions. The probes were considered detectable when the signal to noise ratio (SNR) was over 1.2. The identified proteins were subjected to subsequent bioinformatics analysis using the DAVID database. RESULTS: The HuProt microarray results showed that the signals of 343 proteins were higher in the recombinant CRYAA group than in the control group. The SNR of 127 proteins was ≥ 1.2. The SNR of the following eight proteins was > 3.0: hematopoietic cell-specific Lyn substrate 1 (HCLS1), Kelch domain-containing 6 (KLHDC6), sarcoglycan delta (SGCD), KIAA1706 protein (KIAA1706), RNA guanylyltransferase and 5′-phosphatase (RNGTT), chromosome 10 open reading frame 57 (C10orf57), chromosome 9 open reading frame 52 (C9orf52), and plasminogen activator, urokinase receptor (PLAUR). The bioinformatics analysis revealed 127 proteins associated with phosphoproteins, alternative splicing, acetylation, DNA binding, the nuclear lumen, ribonucleotide binding, the cell cycle, WD40 repeats, protein transport, transcription factor activity, GTP binding, and cellular response to stress. Functional annotation clustering showed that they belong to cell cycle, organelle or nuclear lumen, protein transport, and DNA binding and repair clusters. CRYAA interacted with these proteins to maintain their solubility and decrease the accumulation of denatured target proteins. The protein–protein interactions may help CRYAA carry out multifaceted functions. CONCLUSIONS: One-hundred and twenty-seven of 17,225 human full-length proteins were identified that interact with CRYAA. The advent of microarray analysis enables a better understanding of the functions of CRYAA as a molecular chaperone. |
format | Online Article Text |
id | pubmed-3893783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Molecular Vision |
record_format | MEDLINE/PubMed |
spelling | pubmed-38937832014-01-17 Identification of proteins that interact with alpha A-crystallin using a human proteome microarray Fan, Qi Huang, Lv-Zhen Zhu, Xiang-Jia Zhang, Ke-Ke Ye, Hong-Fei Luo, Yi Sun, Xing-Huai Zhou, Peng Lu, Yi Mol Vis Research Article PURPOSE: To identify proteins interacting with alpha A-crystallin (CRYAA) and to investigate the potential role that these protein interactions play in the function of CRYAA using a human proteome (HuProt) microarray. METHODS: The active full-length CRYAA protein corresponding to amino acids 1–173 of CRYAA was recombined. A HuProt microarray composed of 17,225 human full-length proteins with N-terminal glutathione S-transferase (GST) tags was used to identify protein–protein interactions. The probes were considered detectable when the signal to noise ratio (SNR) was over 1.2. The identified proteins were subjected to subsequent bioinformatics analysis using the DAVID database. RESULTS: The HuProt microarray results showed that the signals of 343 proteins were higher in the recombinant CRYAA group than in the control group. The SNR of 127 proteins was ≥ 1.2. The SNR of the following eight proteins was > 3.0: hematopoietic cell-specific Lyn substrate 1 (HCLS1), Kelch domain-containing 6 (KLHDC6), sarcoglycan delta (SGCD), KIAA1706 protein (KIAA1706), RNA guanylyltransferase and 5′-phosphatase (RNGTT), chromosome 10 open reading frame 57 (C10orf57), chromosome 9 open reading frame 52 (C9orf52), and plasminogen activator, urokinase receptor (PLAUR). The bioinformatics analysis revealed 127 proteins associated with phosphoproteins, alternative splicing, acetylation, DNA binding, the nuclear lumen, ribonucleotide binding, the cell cycle, WD40 repeats, protein transport, transcription factor activity, GTP binding, and cellular response to stress. Functional annotation clustering showed that they belong to cell cycle, organelle or nuclear lumen, protein transport, and DNA binding and repair clusters. CRYAA interacted with these proteins to maintain their solubility and decrease the accumulation of denatured target proteins. The protein–protein interactions may help CRYAA carry out multifaceted functions. CONCLUSIONS: One-hundred and twenty-seven of 17,225 human full-length proteins were identified that interact with CRYAA. The advent of microarray analysis enables a better understanding of the functions of CRYAA as a molecular chaperone. Molecular Vision 2014-01-14 /pmc/articles/PMC3893783/ /pubmed/24453475 Text en Copyright © 2014 Molecular Vision. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed. |
spellingShingle | Research Article Fan, Qi Huang, Lv-Zhen Zhu, Xiang-Jia Zhang, Ke-Ke Ye, Hong-Fei Luo, Yi Sun, Xing-Huai Zhou, Peng Lu, Yi Identification of proteins that interact with alpha A-crystallin using a human proteome microarray |
title | Identification of proteins that interact with alpha A-crystallin using a human proteome microarray |
title_full | Identification of proteins that interact with alpha A-crystallin using a human proteome microarray |
title_fullStr | Identification of proteins that interact with alpha A-crystallin using a human proteome microarray |
title_full_unstemmed | Identification of proteins that interact with alpha A-crystallin using a human proteome microarray |
title_short | Identification of proteins that interact with alpha A-crystallin using a human proteome microarray |
title_sort | identification of proteins that interact with alpha a-crystallin using a human proteome microarray |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893783/ https://www.ncbi.nlm.nih.gov/pubmed/24453475 |
work_keys_str_mv | AT fanqi identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT huanglvzhen identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT zhuxiangjia identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT zhangkeke identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT yehongfei identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT luoyi identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT sunxinghuai identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT zhoupeng identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray AT luyi identificationofproteinsthatinteractwithalphaacrystallinusingahumanproteomemicroarray |