Cargando…

A Miniaturized Magnetic Induction Sensor Using Geomagnetism for Turn Count of Small-Caliber Ammunition

This paper presents a miniaturized magnetic induction sensor (MMIS), where geomagnetism and high rpm rotation of ammunition are used to detect the turn number of the ammunition for applications to small-caliber turn-counting fuzes. The MMIS, composed of cores and a coil, has a robust structure witho...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Sang-Hee, Lee, Seok-Woo, Lee, Young-Ho, Oh, Jong-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894533/
Descripción
Sumario:This paper presents a miniaturized magnetic induction sensor (MMIS), where geomagnetism and high rpm rotation of ammunition are used to detect the turn number of the ammunition for applications to small-caliber turn-counting fuzes. The MMIS, composed of cores and a coil, has a robust structure without moving parts to increase the shock survivability in a gunfire environment of ∼30,000 g's. The MMIS is designed and fabricated on the basis of the simulation results of an electromagnetic analysis tool, Maxwell(®) 3D. In the experimental study, static MMIS test using a solenoid-coil apparatus and dynamic MMIS test (firing test) have been made. The present MMIS has shown that an induction voltage of 6.5 mV(p-p) is generated at a magnetic flux density of 0.05 mT and a rotational velocity of 30,000 rpm. From the measured signal, MMIS has shown a signal-to-noise ratio of 44.0 dB, a nonlinearity of 0.59%, a frequency-normalized sensitivity of 0.256±0.010 V/T·Hz and a drift of 0.27% in the temperature range of -30∼+43°C. Firing test has shown that the MMIS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of the MMIS in a high-g environment.