Cargando…

Panchromatic porous specular back reflectors for efficient transparent dye solar cells

A panchromatic specular reflector based dye solar cell is presented herein. Photovoltaic performance of this novel design is compared to that of cells in which standard diffuse scattering layers are integrated. The capability of the proposed multilayer structures to both emulate the broad band refle...

Descripción completa

Detalles Bibliográficos
Autores principales: López-López, Carmen, Colodrero, Silvia, Míguez, Hernán
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894859/
https://www.ncbi.nlm.nih.gov/pubmed/24263620
http://dx.doi.org/10.1039/c3cp53939c
Descripción
Sumario:A panchromatic specular reflector based dye solar cell is presented herein. Photovoltaic performance of this novel design is compared to that of cells in which standard diffuse scattering layers are integrated. The capability of the proposed multilayer structures to both emulate the broad band reflection of diffuse scattering layers of standard thickness (around 5 microns) and give rise to similarly high light harvesting and power conversion efficiencies, yet preserving the transparency of the device, is demonstrated. Such white light reflectors are comprised of stacks of different porous optical multilayers, each one displaying a strong reflection in a complementary spectral range, and are designed to leave transmittance unaltered in a narrow red-frequency range in which the sensitized electrode shows negligible absorption, thus allowing us to see through the cell. The reflectance bandwidth achieved is three times as broad as the largest bandwidth previously achieved using any photonic structure integrated into a dye solar cell.