Cargando…

A meta-analysis of declines in local species richness from human disturbances

There is high uncertainty surrounding the magnitude of current and future biodiversity loss that is occurring due to human disturbances. Here, we present a global meta-analysis of experimental and observational studies that report 327 measures of change in species richness between disturbed and undi...

Descripción completa

Detalles Bibliográficos
Autores principales: Murphy, Grace E P, Romanuk, Tamara N
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894891/
https://www.ncbi.nlm.nih.gov/pubmed/24455164
http://dx.doi.org/10.1002/ece3.909
Descripción
Sumario:There is high uncertainty surrounding the magnitude of current and future biodiversity loss that is occurring due to human disturbances. Here, we present a global meta-analysis of experimental and observational studies that report 327 measures of change in species richness between disturbed and undisturbed habitats across both terrestrial and aquatic biomes. On average, human-mediated disturbances lead to an 18.3% decline in species richness. Declines in species richness were highest for endotherms (33.2%), followed by producers (25.1%), and ectotherms (10.5%). Land-use change and species invasions had the largest impact on species richness resulting in a 24.8% and 23.7% decline, respectively, followed by habitat loss (14%), nutrient addition (8.2%), and increases in temperature (3.6%). Across all disturbances, declines in species richness were greater for terrestrial biomes (22.4%) than aquatic biomes (5.9%). In the tropics, habitat loss and land-use change had the largest impact on species richness, whereas in the boreal forest and Northern temperate forests, species invasions had the largest impact on species richness. Along with revealing trends in changes in species richness for different disturbances, biomes, and taxa, our results also identify critical knowledge gaps for predicting the effects of human disturbance on Earth's biomes.