Cargando…
Fourier Transform Infrared Spectroscopy: A Potential Technique for Noninvasive Detection of Spermatogenesis
BACKGROUND: The seminal plasma is an excellent source for noninvasive detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed for detection of spermatogenesis. METHODS: Optical spectroscopy (Attenuated Total Reflectance-Infrared spectroscopy (ATR-IR) an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Avicenna Research Institute
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895579/ https://www.ncbi.nlm.nih.gov/pubmed/24523955 |
Sumario: | BACKGROUND: The seminal plasma is an excellent source for noninvasive detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed for detection of spermatogenesis. METHODS: Optical spectroscopy (Attenuated Total Reflectance-Infrared spectroscopy (ATR-IR) and Fourier Transform infrared spectroscopy (FT-IR) has been used to analyze the seminal plasma and the metabolome of seminal plasma for detection of spermatogenesis. RESULTS: The seminal plasma of normospermic and azoospermic men has been analyzed by ATR-IR. The results show that there is a pattern variation in the azoospermic men compared to normospermic men. However, the seminal plasma is too complex to show significant pattern variation. Therefore, the metabolome which is a subcomponent of the seminal plasma was analyzed. The seminal plasma metabolome of normospermic and azoospermic men has been analyzed by FT-IR. A significant pattern change was observed. The data combined with chemometrics analysis showed that significant changes are observed at metabolome level. CONCLUSION: We suggest that FT-IR has the potential as a diagnostic tool instead of testicular biopsy. |
---|