Cargando…

Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory

In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply sup...

Descripción completa

Detalles Bibliográficos
Autores principales: Nami, Mohammad Rahim, Janghorban, Maziar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896292/
https://www.ncbi.nlm.nih.gov/pubmed/24455455
http://dx.doi.org/10.3762/bjnano.4.109
Descripción
Sumario:In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.