Cargando…
Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish
BACKGROUND: Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896338/ https://www.ncbi.nlm.nih.gov/pubmed/24465396 http://dx.doi.org/10.1371/journal.pone.0084212 |
_version_ | 1782300062733303808 |
---|---|
author | Hui, Subhra Prakash Sengupta, Dhriti Lee, Serene Gek Ping Sen, Triparna Kundu, Sudip Mathavan, Sinnakaruppan Ghosh, Sukla |
author_facet | Hui, Subhra Prakash Sengupta, Dhriti Lee, Serene Gek Ping Sen, Triparna Kundu, Sudip Mathavan, Sinnakaruppan Ghosh, Sukla |
author_sort | Hui, Subhra Prakash |
collection | PubMed |
description | BACKGROUND: Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration and information based on high density oligonucleotide microarray was not available. We have used a high density microarray to profile the temporal transcriptome dynamics during the entire phenomenon. RESULTS: A total of 3842 genes expressed differentially with significant fold changes during spinal cord regeneration. Cluster analysis revealed event specific dynamic expression of genes related to inflammation, cell death, cell migration, cell proliferation, neurogenesis, neural patterning and axonal regrowth. Spatio-temporal analysis of stat3 expression suggested its possible function in controlling inflammation and cell proliferation. Genes involved in neurogenesis and their dorso-ventral patterning (sox2 and dbx2) are differentially expressed. Injury induced cell proliferation is controlled by many cell cycle regulators and some are commonly expressed in regenerating fin, heart and retina. Expression pattern of certain pathway genes are identified for the first time during regeneration of spinal cord. Several genes involved in PNS regeneration in mammals like stat3, socs3, atf3, mmp9 and sox11 are upregulated in zebrafish SCI thus creating PNS like environment after injury. CONCLUSION: Our study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord. The data highlights the importance of different event specific gene expression that could be better understood and manipulated further to induce successful regeneration in mammals. |
format | Online Article Text |
id | pubmed-3896338 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38963382014-01-24 Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish Hui, Subhra Prakash Sengupta, Dhriti Lee, Serene Gek Ping Sen, Triparna Kundu, Sudip Mathavan, Sinnakaruppan Ghosh, Sukla PLoS One Research Article BACKGROUND: Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration and information based on high density oligonucleotide microarray was not available. We have used a high density microarray to profile the temporal transcriptome dynamics during the entire phenomenon. RESULTS: A total of 3842 genes expressed differentially with significant fold changes during spinal cord regeneration. Cluster analysis revealed event specific dynamic expression of genes related to inflammation, cell death, cell migration, cell proliferation, neurogenesis, neural patterning and axonal regrowth. Spatio-temporal analysis of stat3 expression suggested its possible function in controlling inflammation and cell proliferation. Genes involved in neurogenesis and their dorso-ventral patterning (sox2 and dbx2) are differentially expressed. Injury induced cell proliferation is controlled by many cell cycle regulators and some are commonly expressed in regenerating fin, heart and retina. Expression pattern of certain pathway genes are identified for the first time during regeneration of spinal cord. Several genes involved in PNS regeneration in mammals like stat3, socs3, atf3, mmp9 and sox11 are upregulated in zebrafish SCI thus creating PNS like environment after injury. CONCLUSION: Our study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord. The data highlights the importance of different event specific gene expression that could be better understood and manipulated further to induce successful regeneration in mammals. Public Library of Science 2014-01-20 /pmc/articles/PMC3896338/ /pubmed/24465396 http://dx.doi.org/10.1371/journal.pone.0084212 Text en © 2014 Hui et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hui, Subhra Prakash Sengupta, Dhriti Lee, Serene Gek Ping Sen, Triparna Kundu, Sudip Mathavan, Sinnakaruppan Ghosh, Sukla Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish |
title | Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish |
title_full | Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish |
title_fullStr | Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish |
title_full_unstemmed | Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish |
title_short | Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish |
title_sort | genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896338/ https://www.ncbi.nlm.nih.gov/pubmed/24465396 http://dx.doi.org/10.1371/journal.pone.0084212 |
work_keys_str_mv | AT huisubhraprakash genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish AT senguptadhriti genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish AT leeserenegekping genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish AT sentriparna genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish AT kundusudip genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish AT mathavansinnakaruppan genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish AT ghoshsukla genomewideexpressionprofilingduringspinalcordregenerationidentifiescomprehensivecellularresponsesinzebrafish |