Cargando…
Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability
Tick-borne encephalitis virus (TBEV) causes one of the most dangerous human neuroinfections in Europe and Asia. To infect neurons it must cross the blood-brain-barrier (BBB), and presumably also cells adjacent to the BBB, such as astrocytes, the most abundant glial cell type. However, the knowledge...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896472/ https://www.ncbi.nlm.nih.gov/pubmed/24465969 http://dx.doi.org/10.1371/journal.pone.0086219 |
Sumario: | Tick-borne encephalitis virus (TBEV) causes one of the most dangerous human neuroinfections in Europe and Asia. To infect neurons it must cross the blood-brain-barrier (BBB), and presumably also cells adjacent to the BBB, such as astrocytes, the most abundant glial cell type. However, the knowledge about the viral infection of glial cells is fragmental. Here we studied whether TBEV infects rat astrocytes. Rats belong to an animal group serving as a TBEV amplifying host. We employed high resolution quantitative fluorescence microscopy to investigate cell entry and cytoplasmic mobility of TBEV particles along with the effect on the cell cytoskeleton and cell survival. We report that infection of astrocytes with TBEV increases with time of exposure to TBEV and that with post-infection time TBEV particles gained higher mobility. After several days of infection actin cytoskeleton was affected, but cell survival was unchanged, indicating that rat astrocytes resist TBEV-mediated cell death, as reported for other mammalian cells. Therefore, astrocytes may present an important pool of dormant TBEV infections and a new target for therapeutic intervention. |
---|