Cargando…
Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients
BACKGROUND: Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897440/ https://www.ncbi.nlm.nih.gov/pubmed/24465542 http://dx.doi.org/10.1371/journal.pone.0085350 |
_version_ | 1782300233097543680 |
---|---|
author | Breitenbuecher, Frank Hoffarth, Sandra Worm, Karl Cortes-Incio, Diana Gauler, Thomas C. Köhler, Jens Herold, Thomas Schmid, Kurt Werner Freitag, Lutz Kasper, Stefan Schuler, Martin |
author_facet | Breitenbuecher, Frank Hoffarth, Sandra Worm, Karl Cortes-Incio, Diana Gauler, Thomas C. Köhler, Jens Herold, Thomas Schmid, Kurt Werner Freitag, Lutz Kasper, Stefan Schuler, Martin |
author_sort | Breitenbuecher, Frank |
collection | PubMed |
description | BACKGROUND: Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients. METHODS: We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome. RESULTS: Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse. CONCLUSIONS: Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies. |
format | Online Article Text |
id | pubmed-3897440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38974402014-01-24 Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients Breitenbuecher, Frank Hoffarth, Sandra Worm, Karl Cortes-Incio, Diana Gauler, Thomas C. Köhler, Jens Herold, Thomas Schmid, Kurt Werner Freitag, Lutz Kasper, Stefan Schuler, Martin PLoS One Research Article BACKGROUND: Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients. METHODS: We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome. RESULTS: Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse. CONCLUSIONS: Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies. Public Library of Science 2014-01-21 /pmc/articles/PMC3897440/ /pubmed/24465542 http://dx.doi.org/10.1371/journal.pone.0085350 Text en © 2014 Breitenbuecher et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Breitenbuecher, Frank Hoffarth, Sandra Worm, Karl Cortes-Incio, Diana Gauler, Thomas C. Köhler, Jens Herold, Thomas Schmid, Kurt Werner Freitag, Lutz Kasper, Stefan Schuler, Martin Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients |
title | Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients |
title_full | Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients |
title_fullStr | Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients |
title_full_unstemmed | Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients |
title_short | Development of a Highly Sensitive and Specific Method for Detection of Circulating Tumor Cells Harboring Somatic Mutations in Non-Small-Cell Lung Cancer Patients |
title_sort | development of a highly sensitive and specific method for detection of circulating tumor cells harboring somatic mutations in non-small-cell lung cancer patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897440/ https://www.ncbi.nlm.nih.gov/pubmed/24465542 http://dx.doi.org/10.1371/journal.pone.0085350 |
work_keys_str_mv | AT breitenbuecherfrank developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT hoffarthsandra developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT wormkarl developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT cortesinciodiana developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT gaulerthomasc developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT kohlerjens developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT heroldthomas developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT schmidkurtwerner developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT freitaglutz developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT kasperstefan developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients AT schulermartin developmentofahighlysensitiveandspecificmethodfordetectionofcirculatingtumorcellsharboringsomaticmutationsinnonsmallcelllungcancerpatients |