Cargando…
Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve
OBJECTIVES: Replacement aortic valves endeavor to mimic native valve function at the organ, tissue, and in the case of bioprosthetic valves, the cellular levels. There is a wealth of information about valve macro and micro structure; however, there presently is limited information on the morphology...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897645/ https://www.ncbi.nlm.nih.gov/pubmed/24465887 http://dx.doi.org/10.1371/journal.pone.0086087 |
_version_ | 1782300274108399616 |
---|---|
author | Rock, Christopher A. Han, Lin Doehring, Todd C. |
author_facet | Rock, Christopher A. Han, Lin Doehring, Todd C. |
author_sort | Rock, Christopher A. |
collection | PubMed |
description | OBJECTIVES: Replacement aortic valves endeavor to mimic native valve function at the organ, tissue, and in the case of bioprosthetic valves, the cellular levels. There is a wealth of information about valve macro and micro structure; however, there presently is limited information on the morphology of the whole valve fiber architecture. The objective of this study was to provide qualitative and quantitative analyses of whole valve and leaflet fiber bundle branching patterns using a novel imaging system. METHODS: We developed a custom automated microscope system with motor and imaging control. Whole leaflets (n = 25) were imaged at high resolution (e.g. 30,000×20,000 pixels) using elliptically polarized light to enhance contrast between structures without the need for staining or other methods. Key morphologies such as fiber bundle size and branching were measured for analyses. RESULTS: The left coronary leaflet displayed large asymmetry in fiber bundle organization relative to the right coronary and non-coronary leaflets. We observed and analyzed three main patterns of fiber branching; tree-like, fan-like, and pinnate structures. High resolution images and quantitative metrics are presented such as fiber bundle sizes, positions, and branching morphological parameters. SIGNIFICANCE: To our knowledge there are currently no high resolution images of whole fresh leaflets available in the literature. The images of fiber/membrane structures and analyses presented here could be highly valuable for improving the design and development of more advanced bioprosthetic and/or bio-mimetic synthetic valve replacements. |
format | Online Article Text |
id | pubmed-3897645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38976452014-01-24 Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve Rock, Christopher A. Han, Lin Doehring, Todd C. PLoS One Research Article OBJECTIVES: Replacement aortic valves endeavor to mimic native valve function at the organ, tissue, and in the case of bioprosthetic valves, the cellular levels. There is a wealth of information about valve macro and micro structure; however, there presently is limited information on the morphology of the whole valve fiber architecture. The objective of this study was to provide qualitative and quantitative analyses of whole valve and leaflet fiber bundle branching patterns using a novel imaging system. METHODS: We developed a custom automated microscope system with motor and imaging control. Whole leaflets (n = 25) were imaged at high resolution (e.g. 30,000×20,000 pixels) using elliptically polarized light to enhance contrast between structures without the need for staining or other methods. Key morphologies such as fiber bundle size and branching were measured for analyses. RESULTS: The left coronary leaflet displayed large asymmetry in fiber bundle organization relative to the right coronary and non-coronary leaflets. We observed and analyzed three main patterns of fiber branching; tree-like, fan-like, and pinnate structures. High resolution images and quantitative metrics are presented such as fiber bundle sizes, positions, and branching morphological parameters. SIGNIFICANCE: To our knowledge there are currently no high resolution images of whole fresh leaflets available in the literature. The images of fiber/membrane structures and analyses presented here could be highly valuable for improving the design and development of more advanced bioprosthetic and/or bio-mimetic synthetic valve replacements. Public Library of Science 2014-01-21 /pmc/articles/PMC3897645/ /pubmed/24465887 http://dx.doi.org/10.1371/journal.pone.0086087 Text en © 2014 Rock et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rock, Christopher A. Han, Lin Doehring, Todd C. Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve |
title | Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve |
title_full | Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve |
title_fullStr | Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve |
title_full_unstemmed | Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve |
title_short | Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve |
title_sort | complex collagen fiber and membrane morphologies of the whole porcine aortic valve |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897645/ https://www.ncbi.nlm.nih.gov/pubmed/24465887 http://dx.doi.org/10.1371/journal.pone.0086087 |
work_keys_str_mv | AT rockchristophera complexcollagenfiberandmembranemorphologiesofthewholeporcineaorticvalve AT hanlin complexcollagenfiberandmembranemorphologiesofthewholeporcineaorticvalve AT doehringtoddc complexcollagenfiberandmembranemorphologiesofthewholeporcineaorticvalve |