Cargando…
Robustness of Random Forest-based gene selection methods
BACKGROUND: Gene selection is an important part of microarray data analysis because it provides information that can lead to a better mechanistic understanding of an investigated phenomenon. At the same time, gene selection is very difficult because of the noisy nature of microarray data. As a conse...
Autor principal: | Kursa, Miron Bartosz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897925/ https://www.ncbi.nlm.nih.gov/pubmed/24410865 http://dx.doi.org/10.1186/1471-2105-15-8 |
Ejemplares similares
-
Kendall transformation brings a robust categorical representation of ordinal data
por: Kursa, Miron Bartosz
Publicado: (2022) -
Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal
por: Hamed, Adam, et al.
Publicado: (2018) -
Pro-inflammatory cytokines, but not brain- and extracellular matrix-derived proteins, are increased in the plasma following electrically induced kindling of seizures
por: Chmielewska, Natalia, et al.
Publicado: (2020) -
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
por: Walker, Angelica M., et al.
Publicado: (2022) -
Robust Indoor Localization Methods Using Random Forest-Based Filter against MAC Spoofing Attack
por: Ko, DongHyun, et al.
Publicado: (2020)