Cargando…

Preserved function and reduced angiogenesis potential of the quadriceps in patients with mild COPD

BACKGROUND: Little is known about limb muscle abnormalities in mild COPD. Inactivity and systemic inflammation could play a role in the development of limb muscle dysfunction in COPD. The objective of the present study was to characterize quadriceps function, enzymatic activities and morphometry, le...

Descripción completa

Detalles Bibliográficos
Autores principales: Gagnon, Philippe, Lemire, Bruno B, Dubé, Annie, Saey, Didier, Porlier, Alexandra, Croteau, Marilie, Provencher, Steeve, Debigaré, Richard, Maltais, François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898018/
https://www.ncbi.nlm.nih.gov/pubmed/24438094
http://dx.doi.org/10.1186/1465-9921-15-4
Descripción
Sumario:BACKGROUND: Little is known about limb muscle abnormalities in mild COPD. Inactivity and systemic inflammation could play a role in the development of limb muscle dysfunction in COPD. The objective of the present study was to characterize quadriceps function, enzymatic activities and morphometry, levels of plasma inflammatory markers and physical activity levels in daily life (PA(dl)) in patients with mild COPD (GOLD 1). METHODS: Mid-thigh muscle cross-sectional area (MTCSA), quadriceps strength, endurance, fiber-type distribution, capillarity, pro-angiogenesis factors (VEGF-A, angiopoietin I and II) and muscle oxidative capacity were assessed in 37 patients with mild COPD and 19 controls. Systemic inflammatory markers (CRP, IL-6, TNF-α, Fibrinogen, SP-D) and PA(dl) were assessed. RESULTS: MTCSA, quadriceps strength and endurance were not different between COPD and controls. Capillarity and muscle oxidative capacity were all preserved in mild COPD. Reduced pro-angiogenesis factor mRNA expression was seen in COPD. The level of moderately active intensity (>3 METs) was significantly lower in mild COPD and, in multiple regression analyses, the level of physical activity was a determinant of muscle oxidative capacity and capillarization. No between-group differences were found regarding muscle oxidative stress while circulating IL-6 levels were elevated in mild COPD. CONCLUSIONS: The quadriceps muscle function was preserved in mild COPD although a reduced potential for angiogenesis was found. The reduced level of daily activities and evidence of systemic inflammation in these individuals suggest that these factors precede the development of overt limb muscle dysfunction in COPD.