Cargando…

Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ

Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical a...

Descripción completa

Detalles Bibliográficos
Autores principales: Khatri, Priti, Obernier, Kirsten, Simeonova, Ina K., Hellwig, Andrea, Hölzl-Wenig, Gabriele, Mandl, Claudia, Scholl, Catharina, Wölfl, Stefan, Winkler, Johannes, Gaspar, John A., Sachinidis, Agapios, Ciccolini, Francesca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898048/
https://www.ncbi.nlm.nih.gov/pubmed/24448162
http://dx.doi.org/10.1038/srep03803
_version_ 1782300348419932160
author Khatri, Priti
Obernier, Kirsten
Simeonova, Ina K.
Hellwig, Andrea
Hölzl-Wenig, Gabriele
Mandl, Claudia
Scholl, Catharina
Wölfl, Stefan
Winkler, Johannes
Gaspar, John A.
Sachinidis, Agapios
Ciccolini, Francesca
author_facet Khatri, Priti
Obernier, Kirsten
Simeonova, Ina K.
Hellwig, Andrea
Hölzl-Wenig, Gabriele
Mandl, Claudia
Scholl, Catharina
Wölfl, Stefan
Winkler, Johannes
Gaspar, John A.
Sachinidis, Agapios
Ciccolini, Francesca
author_sort Khatri, Priti
collection PubMed
description Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical application. However, the direct analysis of NSCs and their progeny is still elusive due to the problematic identification of the cells. We here describe the isolation of highly purified genetically unaltered NSCs and transit-amplifying precursors (TAPs) from the adult subependymal zone (SEZ). Using this approach we show that a primary cilium and high levels of epidermal growth factor receptor (EGFR) at the cell membrane characterize quiescent and cycling NSCs, respectively. However, we also observed non-ciliated quiescent NSCs and NSCs progressing into the cell cycle without up-regulating EGFR expression. Thus, the existence of NSCs displaying distinct molecular and structural conformations provides more flexibility to the regulation of quiescence and cell cycle progression.
format Online
Article
Text
id pubmed-3898048
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38980482014-01-24 Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ Khatri, Priti Obernier, Kirsten Simeonova, Ina K. Hellwig, Andrea Hölzl-Wenig, Gabriele Mandl, Claudia Scholl, Catharina Wölfl, Stefan Winkler, Johannes Gaspar, John A. Sachinidis, Agapios Ciccolini, Francesca Sci Rep Article Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical application. However, the direct analysis of NSCs and their progeny is still elusive due to the problematic identification of the cells. We here describe the isolation of highly purified genetically unaltered NSCs and transit-amplifying precursors (TAPs) from the adult subependymal zone (SEZ). Using this approach we show that a primary cilium and high levels of epidermal growth factor receptor (EGFR) at the cell membrane characterize quiescent and cycling NSCs, respectively. However, we also observed non-ciliated quiescent NSCs and NSCs progressing into the cell cycle without up-regulating EGFR expression. Thus, the existence of NSCs displaying distinct molecular and structural conformations provides more flexibility to the regulation of quiescence and cell cycle progression. Nature Publishing Group 2014-01-22 /pmc/articles/PMC3898048/ /pubmed/24448162 http://dx.doi.org/10.1038/srep03803 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Khatri, Priti
Obernier, Kirsten
Simeonova, Ina K.
Hellwig, Andrea
Hölzl-Wenig, Gabriele
Mandl, Claudia
Scholl, Catharina
Wölfl, Stefan
Winkler, Johannes
Gaspar, John A.
Sachinidis, Agapios
Ciccolini, Francesca
Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ
title Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ
title_full Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ
title_fullStr Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ
title_full_unstemmed Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ
title_short Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ
title_sort proliferation and cilia dynamics in neural stem cells prospectively isolated from the sez
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898048/
https://www.ncbi.nlm.nih.gov/pubmed/24448162
http://dx.doi.org/10.1038/srep03803
work_keys_str_mv AT khatripriti proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT obernierkirsten proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT simeonovainak proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT hellwigandrea proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT holzlweniggabriele proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT mandlclaudia proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT schollcatharina proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT wolflstefan proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT winklerjohannes proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT gasparjohna proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT sachinidisagapios proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez
AT ciccolinifrancesca proliferationandciliadynamicsinneuralstemcellsprospectivelyisolatedfromthesez