Cargando…
PPARγ maintains ERBB2-positive breast cancer stem cells
Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898098/ https://www.ncbi.nlm.nih.gov/pubmed/23770845 http://dx.doi.org/10.1038/onc.2013.217 |
_version_ | 1782300359606140928 |
---|---|
author | Wang, X Sun, Y Wong, J Conklin, D S |
author_facet | Wang, X Sun, Y Wong, J Conklin, D S |
author_sort | Wang, X |
collection | PubMed |
description | Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway in upregulating several genes in the de novo fatty acid synthesis network, which is highly active in ERBB2-positive breast cancer cells. NR1D1 and PBP are functionally related to PPARγ, a well-established positive regulator of adipogenesis and lipid storage. Here, we report that inhibition of the PPARγ pathway reduces the aldehyde dehydrogenase (ALDH)-positive population in ERBB2-positive breast cancer cells. Results from in vitro tumorsphere formation assays demonstrate that the PPARγ antagonists GW9662 and T0070907 decrease tumorsphere formation in ERBB2-positive cells, but not other breast cells. We show that the mechanism by which GW9662 treatment causes a reduction in ALDH-positive population cells is partially due to ROS, as it can be rescued by treatment with N-acetyl-cysteine. Furthermore, global gene expression analyses show that GW9662 treatment suppresses the expression of several lipogenic genes, including ACLY, MIG12, FASN and NR1D1, and the stem-cell related genes KLF4 and ALDH in BT474 cells. Antagonist treatment also decreases the level of acetylation in histone 3 and histone 4 in BT474 cells, compared with MCF7 cells. In vivo, GW9662 pre-treatment inhibits the tumor-seeding ability of BT474 cells. Together, these results show that the PPARγ pathway is critical for the cancer stem cell properties of ERBB2-positive breast cancer cells. |
format | Online Article Text |
id | pubmed-3898098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-38980982014-01-24 PPARγ maintains ERBB2-positive breast cancer stem cells Wang, X Sun, Y Wong, J Conklin, D S Oncogene Original Article Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway in upregulating several genes in the de novo fatty acid synthesis network, which is highly active in ERBB2-positive breast cancer cells. NR1D1 and PBP are functionally related to PPARγ, a well-established positive regulator of adipogenesis and lipid storage. Here, we report that inhibition of the PPARγ pathway reduces the aldehyde dehydrogenase (ALDH)-positive population in ERBB2-positive breast cancer cells. Results from in vitro tumorsphere formation assays demonstrate that the PPARγ antagonists GW9662 and T0070907 decrease tumorsphere formation in ERBB2-positive cells, but not other breast cells. We show that the mechanism by which GW9662 treatment causes a reduction in ALDH-positive population cells is partially due to ROS, as it can be rescued by treatment with N-acetyl-cysteine. Furthermore, global gene expression analyses show that GW9662 treatment suppresses the expression of several lipogenic genes, including ACLY, MIG12, FASN and NR1D1, and the stem-cell related genes KLF4 and ALDH in BT474 cells. Antagonist treatment also decreases the level of acetylation in histone 3 and histone 4 in BT474 cells, compared with MCF7 cells. In vivo, GW9662 pre-treatment inhibits the tumor-seeding ability of BT474 cells. Together, these results show that the PPARγ pathway is critical for the cancer stem cell properties of ERBB2-positive breast cancer cells. Nature Publishing Group 2013-12-05 2013-06-17 /pmc/articles/PMC3898098/ /pubmed/23770845 http://dx.doi.org/10.1038/onc.2013.217 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Wang, X Sun, Y Wong, J Conklin, D S PPARγ maintains ERBB2-positive breast cancer stem cells |
title | PPARγ maintains ERBB2-positive breast cancer stem cells |
title_full | PPARγ maintains ERBB2-positive breast cancer stem cells |
title_fullStr | PPARγ maintains ERBB2-positive breast cancer stem cells |
title_full_unstemmed | PPARγ maintains ERBB2-positive breast cancer stem cells |
title_short | PPARγ maintains ERBB2-positive breast cancer stem cells |
title_sort | pparγ maintains erbb2-positive breast cancer stem cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898098/ https://www.ncbi.nlm.nih.gov/pubmed/23770845 http://dx.doi.org/10.1038/onc.2013.217 |
work_keys_str_mv | AT wangx ppargmaintainserbb2positivebreastcancerstemcells AT suny ppargmaintainserbb2positivebreastcancerstemcells AT wongj ppargmaintainserbb2positivebreastcancerstemcells AT conklinds ppargmaintainserbb2positivebreastcancerstemcells |