Cargando…

Optical Properties of a Vibrationally Modulated Solid State Mott Insulator

Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make elect...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaiser, S., Clark, S. R., Nicoletti, D., Cotugno, G., Tobey, R. I., Dean, N., Lupi, S., Okamoto, H., Hasegawa, T., Jaksch, D., Cavalleri, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898202/
https://www.ncbi.nlm.nih.gov/pubmed/24448171
http://dx.doi.org/10.1038/srep03823
_version_ 1782300379053031424
author Kaiser, S.
Clark, S. R.
Nicoletti, D.
Cotugno, G.
Tobey, R. I.
Dean, N.
Lupi, S.
Okamoto, H.
Hasegawa, T.
Jaksch, D.
Cavalleri, A.
author_facet Kaiser, S.
Clark, S. R.
Nicoletti, D.
Cotugno, G.
Tobey, R. I.
Dean, N.
Lupi, S.
Okamoto, H.
Hasegawa, T.
Jaksch, D.
Cavalleri, A.
author_sort Kaiser, S.
collection PubMed
description Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F(2)TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode.
format Online
Article
Text
id pubmed-3898202
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38982022014-01-24 Optical Properties of a Vibrationally Modulated Solid State Mott Insulator Kaiser, S. Clark, S. R. Nicoletti, D. Cotugno, G. Tobey, R. I. Dean, N. Lupi, S. Okamoto, H. Hasegawa, T. Jaksch, D. Cavalleri, A. Sci Rep Article Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F(2)TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode. Nature Publishing Group 2014-01-22 /pmc/articles/PMC3898202/ /pubmed/24448171 http://dx.doi.org/10.1038/srep03823 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Kaiser, S.
Clark, S. R.
Nicoletti, D.
Cotugno, G.
Tobey, R. I.
Dean, N.
Lupi, S.
Okamoto, H.
Hasegawa, T.
Jaksch, D.
Cavalleri, A.
Optical Properties of a Vibrationally Modulated Solid State Mott Insulator
title Optical Properties of a Vibrationally Modulated Solid State Mott Insulator
title_full Optical Properties of a Vibrationally Modulated Solid State Mott Insulator
title_fullStr Optical Properties of a Vibrationally Modulated Solid State Mott Insulator
title_full_unstemmed Optical Properties of a Vibrationally Modulated Solid State Mott Insulator
title_short Optical Properties of a Vibrationally Modulated Solid State Mott Insulator
title_sort optical properties of a vibrationally modulated solid state mott insulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898202/
https://www.ncbi.nlm.nih.gov/pubmed/24448171
http://dx.doi.org/10.1038/srep03823
work_keys_str_mv AT kaisers opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT clarksr opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT nicolettid opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT cotugnog opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT tobeyri opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT deann opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT lupis opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT okamotoh opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT hasegawat opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT jakschd opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator
AT cavalleria opticalpropertiesofavibrationallymodulatedsolidstatemottinsulator