Cargando…
Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System
A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898612/ https://www.ncbi.nlm.nih.gov/pubmed/24183672 http://dx.doi.org/10.1016/j.celrep.2013.09.045 |
_version_ | 1782300448802209792 |
---|---|
author | Antinucci, Paride Nikolaou, Nikolas Meyer, Martin P. Hindges, Robert |
author_facet | Antinucci, Paride Nikolaou, Nikolas Meyer, Martin P. Hindges, Robert |
author_sort | Antinucci, Paride |
collection | PubMed |
description | A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system. |
format | Online Article Text |
id | pubmed-3898612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-38986122014-01-24 Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System Antinucci, Paride Nikolaou, Nikolas Meyer, Martin P. Hindges, Robert Cell Rep Report A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system. Cell Press 2013-10-31 /pmc/articles/PMC3898612/ /pubmed/24183672 http://dx.doi.org/10.1016/j.celrep.2013.09.045 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Report Antinucci, Paride Nikolaou, Nikolas Meyer, Martin P. Hindges, Robert Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_full | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_fullStr | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_full_unstemmed | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_short | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_sort | teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898612/ https://www.ncbi.nlm.nih.gov/pubmed/24183672 http://dx.doi.org/10.1016/j.celrep.2013.09.045 |
work_keys_str_mv | AT antinucciparide teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem AT nikolaounikolas teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem AT meyermartinp teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem AT hindgesrobert teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem |