Cargando…
Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity
White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899275/ https://www.ncbi.nlm.nih.gov/pubmed/24466096 http://dx.doi.org/10.1371/journal.pone.0086437 |
_version_ | 1782300548295294976 |
---|---|
author | Reynolds, Hannah T. Barton, Hazel A. |
author_facet | Reynolds, Hannah T. Barton, Hazel A. |
author_sort | Reynolds, Hannah T. |
collection | PubMed |
description | White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans’ saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth. |
format | Online Article Text |
id | pubmed-3899275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38992752014-01-24 Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity Reynolds, Hannah T. Barton, Hazel A. PLoS One Research Article White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans’ saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth. Public Library of Science 2014-01-22 /pmc/articles/PMC3899275/ /pubmed/24466096 http://dx.doi.org/10.1371/journal.pone.0086437 Text en © 2014 Reynolds, Barton http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Reynolds, Hannah T. Barton, Hazel A. Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity |
title | Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity |
title_full | Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity |
title_fullStr | Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity |
title_full_unstemmed | Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity |
title_short | Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity |
title_sort | comparison of the white-nose syndrome agent pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899275/ https://www.ncbi.nlm.nih.gov/pubmed/24466096 http://dx.doi.org/10.1371/journal.pone.0086437 |
work_keys_str_mv | AT reynoldshannaht comparisonofthewhitenosesyndromeagentpseudogymnoascusdestructanstocavedwellingrelativessuggestsreducedsaprotrophicenzymeactivity AT bartonhazela comparisonofthewhitenosesyndromeagentpseudogymnoascusdestructanstocavedwellingrelativessuggestsreducedsaprotrophicenzymeactivity |