Cargando…

Genome-Wide Identification and Evolutionary Analysis of the SBP-Box Gene Family in Castor Bean

Genes in the SQUAMOSA promoter-binding-protein (SBP-box) gene family encode transcriptional regulators and perform a variety of regulatory functions that involved in the developmental and physiological processes of plants. In this study, a comprehensive computational analysis identified 15 candidate...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shu-Dong, Ling, Li-Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899293/
https://www.ncbi.nlm.nih.gov/pubmed/24466202
http://dx.doi.org/10.1371/journal.pone.0086688
Descripción
Sumario:Genes in the SQUAMOSA promoter-binding-protein (SBP-box) gene family encode transcriptional regulators and perform a variety of regulatory functions that involved in the developmental and physiological processes of plants. In this study, a comprehensive computational analysis identified 15 candidates of the SBP-box gene family in the castor bean (Ricinus communis). The phylogenetic and domain analysis indicated that these genes were divided into two groups (group I and II). The group II was a big branch and was further classified into three subgroups (subgroup II-1 to 3) based on the phylogeny, gene structures and conserved motifs. It was observed that the genes of subgroup II-1 had distinct evolutionary features from those of the other two subgroups, however, were more similar to those of group I. Therefore, we inferred that group I and subgroup II-1 might retain ancient signals, whereas the subgroup II-2 and 3 exhibited the divergence during evolutionary process. Estimation of evolutionary parameters (d(N) and d(N)/d(S)) further supported our hypothesis. At first, the group I was more constrained by strong purifying selection and evolved slowly with a lower substitution rate than group II. As regards the three subgroups, subgroup II-1 had the lowest rate of substitution and was under strong purifying selection. By contrast, subgroups II-2 and 3 evolved more rapidly and experienced less purifying selection. These results indicated that the different evolutionary rates and selection strength caused the different evolutionary patterns of the members of SBP-box genes in castor bean. Taken together, these results provide better insights into understanding evolutionary divergence of the members of SBP-box gene family in castor bean and provide a guide for future functional diverse analyses of this gene family.