Cargando…

TRAIL/DR5 Signaling Promotes Macrophage Foam Cell Formation by Modulating Scavenger Receptor Expression

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to have protective effects against atherosclerosis. However, whether TRAIL has any effects on expression of macrophage scavenger receptors and lipid uptake has not yet been studied. Macrophage lines RAW264.7 and THP...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fang Fang, Wu, Xiao, Zhang, Yun, Wang, Yan, Jiang, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899365/
https://www.ncbi.nlm.nih.gov/pubmed/24466325
http://dx.doi.org/10.1371/journal.pone.0087059
Descripción
Sumario:Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to have protective effects against atherosclerosis. However, whether TRAIL has any effects on expression of macrophage scavenger receptors and lipid uptake has not yet been studied. Macrophage lines RAW264.7 and THP-1, and mouse primary peritoneal macrophages, were cultured in vitro and treated with recombinant human TRAIL. Real-time PCR and western blot were performed to measure mRNA and protein expressions. Foam cell formation was assessed by internalization of acetylated and oxidized low-density lipoproteins (LDL). Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. We found that TRAIL treatment increased expression of scavenger receptor (SR)-AI and SR-BI in a time- and dose-dependent manner, and this effect was accompanied by increased foam cell formation. These effects of TRAIL were abolished by a TRAIL neutralizing antibody or in DR5 receptor-deficient macrophages. The increased LDL uptake by TRAIL was blocked by SR-AI gene silencing or the SR-AI inhibitor poly(I:C), while SR-BI blockade with BLT-1 had no effect. TRAIL-induced SR-AI expression was blocked by the inhibitor of p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2 or JNK. TRAIL also induced apoptosis in macrophages. In contrast to macrophages, TRAIL showed little effects on SR expression or apoptosis in vascular smooth muscle cells. In conclusion, our results demonstrate that TRAIL promotes macrophage lipid uptake via SR-AI upregulation through activation of the p38 pathway.