Cargando…

Tumor Vasculature-Targeted Recombinant Mutated Human TNF-α Enhanced the Antitumor Activity of Doxorubicin by Increasing Tumor Vessel Permeability in Mouse Xenograft Models

OBJECTIVE: Increasing evidence suggests that, when used in combination, tumor necrosis factor-α (TNF-α) synergizes with traditional chemotherapeutic drugs to exert a heightened antitumor effect. The present study investigated the antitumor efficacy of recombinant mutated human TNF-α specifically tar...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Changli, Niu, Junzhou, Li, Meng, Teng, Yi, Wang, Huixuan, Zhang, Yingqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899378/
https://www.ncbi.nlm.nih.gov/pubmed/24466321
http://dx.doi.org/10.1371/journal.pone.0087036
Descripción
Sumario:OBJECTIVE: Increasing evidence suggests that, when used in combination, tumor necrosis factor-α (TNF-α) synergizes with traditional chemotherapeutic drugs to exert a heightened antitumor effect. The present study investigated the antitumor efficacy of recombinant mutated human TNF-α specifically targeted to the tumor vasculature (RGD-rmhTNF-α) combined with the chemotherapeutic agent doxorubicin in 2 murine allografted tumor models. METHODS: Mice bearing hepatoma or sarcoma allografted tumors were treated with various doses of RGD-rmhTNF-α alone or in combination with doxorubicin (2 mg/kg). We then evaluated tumor growth and tumor vessel permeability as well as intratumoral levels of RGD-rmhTNF-α and doxorubicin. RESULTS: RGD-rmhTNF-α treatment enhanced the permeability of the tumor vessels and increased intratumoral doxorubicin levels. In addition, intratumoral RGD-rmhTNF-α levels were significantly higher than that of rmhTNF-α. In both of the tested tumor models, administering RGD-rmhTNF-α in combination with doxorubicin resulted in an enhanced antitumor response compared to either treatment alone. Double-agent combination treatment of doxorubicin with 50,000 IU/kg RGD-rmhTNF-α induced stronger antitumor effects on H22 allografted tumor-bearing mice than the single doxorubicin agent alone. Moreover, doxorubicin with 10,000 IU/kg RGD-rmhTNF-α synergized to inhibit tumor growth in S180 allografted tumor-bearing mice. CONCLUSIONS: These results suggest that targeted delivery of low doses of RGD-rmhTNF-α into the tumor vasculature increases the antitumor efficacy of chemotherapeutic drugs.