Cargando…
Fold change rank ordering statistics: a new method for detecting differentially expressed genes
BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more repr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899927/ https://www.ncbi.nlm.nih.gov/pubmed/24423217 http://dx.doi.org/10.1186/1471-2105-15-14 |
_version_ | 1782300636473196544 |
---|---|
author | Dembélé, Doulaye Kastner, Philippe |
author_facet | Dembélé, Doulaye Kastner, Philippe |
author_sort | Dembélé, Doulaye |
collection | PubMed |
description | BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods. |
format | Online Article Text |
id | pubmed-3899927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38999272014-02-06 Fold change rank ordering statistics: a new method for detecting differentially expressed genes Dembélé, Doulaye Kastner, Philippe BMC Bioinformatics Research Article BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods. BioMed Central 2014-01-15 /pmc/articles/PMC3899927/ /pubmed/24423217 http://dx.doi.org/10.1186/1471-2105-15-14 Text en Copyright © 2014 Dembélé and Kastner; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dembélé, Doulaye Kastner, Philippe Fold change rank ordering statistics: a new method for detecting differentially expressed genes |
title | Fold change rank ordering statistics: a new method for detecting differentially expressed genes |
title_full | Fold change rank ordering statistics: a new method for detecting differentially expressed genes |
title_fullStr | Fold change rank ordering statistics: a new method for detecting differentially expressed genes |
title_full_unstemmed | Fold change rank ordering statistics: a new method for detecting differentially expressed genes |
title_short | Fold change rank ordering statistics: a new method for detecting differentially expressed genes |
title_sort | fold change rank ordering statistics: a new method for detecting differentially expressed genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899927/ https://www.ncbi.nlm.nih.gov/pubmed/24423217 http://dx.doi.org/10.1186/1471-2105-15-14 |
work_keys_str_mv | AT dembeledoulaye foldchangerankorderingstatisticsanewmethodfordetectingdifferentiallyexpressedgenes AT kastnerphilippe foldchangerankorderingstatisticsanewmethodfordetectingdifferentiallyexpressedgenes |