Cargando…
Heritability of Radiation Response in Lung Cancer Families
Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 1...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899950/ https://www.ncbi.nlm.nih.gov/pubmed/24704916 http://dx.doi.org/10.3390/genes3020248 |
_version_ | 1782300638528405504 |
---|---|
author | Rosenberger, Albert Rössler, Ute Hornhardt, Sabine Sauter, Wiebke Bickeböller, Heike Wichmann, H.-Erich Gomolka, Maria |
author_facet | Rosenberger, Albert Rössler, Ute Hornhardt, Sabine Sauter, Wiebke Bickeböller, Heike Wichmann, H.-Erich Gomolka, Maria |
author_sort | Rosenberger, Albert |
collection | PubMed |
description | Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 177 Caucasian cases of early onset lung cancer. In total 798 individuals were characterized for their radiation-induced DNA damage response. DNA damage analysis was performed by alkaline comet assay before and after in vitro irradiation of isolated lymphocytes. The cells were exposed to a dose of 4 Gy and allowed to repair induced DNA-damage up to 60 minutes. The primary outcome parameter Olive Tail Moment was the basis for heritability estimates. Heritability was highest for basal damage (without irradiation) 70% (95%-CI: 51%–88%) and initial damage (directly after irradiation) 65% (95%-CI: 47%–83%) and decreased to 20%–48% for the residual damage after different repair times. Hence our study supports the hypothesis that genomic instability represented by the basal DNA damage as well as radiation induced and repaired damage is highly heritable. Genes influencing genome instability and DNA repair are therefore of major interest for the etiology of lung cancer in the young. The comet assay represents a proper tool to investigate heritability of the radiation sensitive phenotype. Our results are in good agreement with other mutagen sensitivity assays. |
format | Online Article Text |
id | pubmed-3899950 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-38999502014-03-26 Heritability of Radiation Response in Lung Cancer Families Rosenberger, Albert Rössler, Ute Hornhardt, Sabine Sauter, Wiebke Bickeböller, Heike Wichmann, H.-Erich Gomolka, Maria Genes (Basel) Article Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 177 Caucasian cases of early onset lung cancer. In total 798 individuals were characterized for their radiation-induced DNA damage response. DNA damage analysis was performed by alkaline comet assay before and after in vitro irradiation of isolated lymphocytes. The cells were exposed to a dose of 4 Gy and allowed to repair induced DNA-damage up to 60 minutes. The primary outcome parameter Olive Tail Moment was the basis for heritability estimates. Heritability was highest for basal damage (without irradiation) 70% (95%-CI: 51%–88%) and initial damage (directly after irradiation) 65% (95%-CI: 47%–83%) and decreased to 20%–48% for the residual damage after different repair times. Hence our study supports the hypothesis that genomic instability represented by the basal DNA damage as well as radiation induced and repaired damage is highly heritable. Genes influencing genome instability and DNA repair are therefore of major interest for the etiology of lung cancer in the young. The comet assay represents a proper tool to investigate heritability of the radiation sensitive phenotype. Our results are in good agreement with other mutagen sensitivity assays. MDPI 2012-03-29 /pmc/articles/PMC3899950/ /pubmed/24704916 http://dx.doi.org/10.3390/genes3020248 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Rosenberger, Albert Rössler, Ute Hornhardt, Sabine Sauter, Wiebke Bickeböller, Heike Wichmann, H.-Erich Gomolka, Maria Heritability of Radiation Response in Lung Cancer Families |
title | Heritability of Radiation Response in Lung Cancer Families |
title_full | Heritability of Radiation Response in Lung Cancer Families |
title_fullStr | Heritability of Radiation Response in Lung Cancer Families |
title_full_unstemmed | Heritability of Radiation Response in Lung Cancer Families |
title_short | Heritability of Radiation Response in Lung Cancer Families |
title_sort | heritability of radiation response in lung cancer families |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899950/ https://www.ncbi.nlm.nih.gov/pubmed/24704916 http://dx.doi.org/10.3390/genes3020248 |
work_keys_str_mv | AT rosenbergeralbert heritabilityofradiationresponseinlungcancerfamilies AT rosslerute heritabilityofradiationresponseinlungcancerfamilies AT hornhardtsabine heritabilityofradiationresponseinlungcancerfamilies AT sauterwiebke heritabilityofradiationresponseinlungcancerfamilies AT bickebollerheike heritabilityofradiationresponseinlungcancerfamilies AT wichmannherich heritabilityofradiationresponseinlungcancerfamilies AT gomolkamaria heritabilityofradiationresponseinlungcancerfamilies |