Cargando…

The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters

The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses...

Descripción completa

Detalles Bibliográficos
Autores principales: Black, Michael, Moolhuijzen, Paula, Chapman, Brett, Barrero, Roberto, Howieson, John, Hungria, Mariangela, Bellgard, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899959/
https://www.ncbi.nlm.nih.gov/pubmed/24704847
http://dx.doi.org/10.3390/genes3010138
_version_ 1782300640329859072
author Black, Michael
Moolhuijzen, Paula
Chapman, Brett
Barrero, Roberto
Howieson, John
Hungria, Mariangela
Bellgard, Matthew
author_facet Black, Michael
Moolhuijzen, Paula
Chapman, Brett
Barrero, Roberto
Howieson, John
Hungria, Mariangela
Bellgard, Matthew
author_sort Black, Michael
collection PubMed
description The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome.
format Online
Article
Text
id pubmed-3899959
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-38999592014-03-26 The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters Black, Michael Moolhuijzen, Paula Chapman, Brett Barrero, Roberto Howieson, John Hungria, Mariangela Bellgard, Matthew Genes (Basel) Article The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome. MDPI 2012-02-16 /pmc/articles/PMC3899959/ /pubmed/24704847 http://dx.doi.org/10.3390/genes3010138 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Black, Michael
Moolhuijzen, Paula
Chapman, Brett
Barrero, Roberto
Howieson, John
Hungria, Mariangela
Bellgard, Matthew
The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters
title The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters
title_full The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters
title_fullStr The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters
title_full_unstemmed The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters
title_short The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters
title_sort genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899959/
https://www.ncbi.nlm.nih.gov/pubmed/24704847
http://dx.doi.org/10.3390/genes3010138
work_keys_str_mv AT blackmichael thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT moolhuijzenpaula thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT chapmanbrett thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT barreroroberto thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT howiesonjohn thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT hungriamariangela thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT bellgardmatthew thegeneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT blackmichael geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT moolhuijzenpaula geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT chapmanbrett geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT barreroroberto geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT howiesonjohn geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT hungriamariangela geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters
AT bellgardmatthew geneticsofsymbioticnitrogenfixationcomparativegenomicsof14rhizobiastrainsbyresolutionofproteinclusters