Cargando…
N2A: a computational tool for modeling from neurons to algorithms
The exponential increase in available neural data has combined with the exponential growth in computing (“Moore's law”) to create new opportunities to understand neural systems at large scale and high detail. The ability to produce large and sophisticated simulations has introduced unique chall...
Autores principales: | Rothganger, Fredrick, Warrender, Christina E., Trumbo, Derek, Aimone, James B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901007/ https://www.ncbi.nlm.nih.gov/pubmed/24478635 http://dx.doi.org/10.3389/fncir.2014.00001 |
Ejemplares similares
-
Perspectives for computational modeling of cell replacement for neurological disorders
por: Aimone, James B., et al.
Publicado: (2013) -
Editorial: Neuroscience, computing, performance, and benchmarks: Why it matters to neuroscience how fast we can compute
por: Aimone, James B., et al.
Publicado: (2023) -
Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures
por: Manninen, Tiina, et al.
Publicado: (2018) -
The brain’s unique take on algorithms
por: Aimone, James B., et al.
Publicado: (2023) -
An Algorithm for Finding Candidate Synaptic Sites in Computer Generated Networks of Neurons with Realistic Morphologies
por: van Pelt, Jaap, et al.
Publicado: (2010)