Cargando…

Genetic Systems to Investigate Regulation of Oncogenes and Tumour Suppressor Genes in Drosophila

Animal growth requires coordination of cell growth and cell cycle progression with developmental signaling. Loss of cell cycle control is extremely detrimental, with reduced cycles leading to impaired organ growth and excessive proliferation, potentially resulting in tissue overgrowth and driving tu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jue Er Amanda, Cranna, Nicola J., Chahal, Arjun S., Quinn, Leonie M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901149/
https://www.ncbi.nlm.nih.gov/pubmed/24710550
http://dx.doi.org/10.3390/cells1041182
Descripción
Sumario:Animal growth requires coordination of cell growth and cell cycle progression with developmental signaling. Loss of cell cycle control is extremely detrimental, with reduced cycles leading to impaired organ growth and excessive proliferation, potentially resulting in tissue overgrowth and driving tumour initiation. Due to the high level of conservation between the cell cycle machinery of Drosophila and humans, the appeal of the fly model continues to be the means with which we can use sophisticated genetics to provide novel insights into mammalian growth and cell cycle control. Over the last decade, there have been major additions to the genetic toolbox to study development in Drosophila. Here we discuss some of the approaches available to investigate the potent growth and cell cycle properties of the Drosophila counterparts of prominent cancer genes, with a focus on the c-Myc oncoprotein and the tumour suppressor protein FIR (Hfp in flies), which behaves as a transcriptional repressor of c-Myc.