Cargando…

Metabolic and Pharmacokinetic Differentiation of STX209 and Racemic Baclofen in Humans

STX209 is an exploratory drug comprising the single, active R-enantiomer of baclofen which is in later stage clinical trials for the treatment of fragile x syndrome (FXS) and autism spectrum disorders (ASD). New clinical data in this article on the metabolism and pharmacokinetics of the R- and S-ena...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanchez-Ponce, Raymundo, Wang, Li-Quan, Lu, Wei, von Hehn, Jana, Cherubini, Maryann, Rush, Roger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901214/
https://www.ncbi.nlm.nih.gov/pubmed/24957649
http://dx.doi.org/10.3390/metabo2030596
Descripción
Sumario:STX209 is an exploratory drug comprising the single, active R-enantiomer of baclofen which is in later stage clinical trials for the treatment of fragile x syndrome (FXS) and autism spectrum disorders (ASD). New clinical data in this article on the metabolism and pharmacokinetics of the R- and S-enantiomers of baclofen presents scientific evidence for stereoselective metabolism of only S-baclofen to an abundant oxidative deamination metabolite that is sterically resolved as the S-enantiomeric configuration. This metabolite undergoes some further metabolism by glucuronide conjugation. Consequences of this metabolic difference are a lower C(max) and lower early plasma exposure of S-baclofen compared to R-baclofen and marginally lower urinary excretion of S-baclofen after racemic baclofen administration. These differences introduce compound-related exposure variances in humans in which subjects dosed with racemic baclofen are exposed to a prominent metabolite of baclofen whilst subjects dosed with STX209 are not. For potential clinical use, our findings suggest that STX209 has the advantage of being a biologically defined and active enantiomer.