Cargando…
Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches
Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technolo...
Autores principales: | Hauschild, Anne-Christin, Kopczynski, Dominik, D’Addario, Marianna, Baumbach, Jörg Ingo, Rahmann, Sven, Baumbach, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901270/ https://www.ncbi.nlm.nih.gov/pubmed/24957992 http://dx.doi.org/10.3390/metabo3020277 |
Ejemplares similares
-
A modular computational framework for automated peak extraction from ion mobility spectra
por: D’Addario, Marianna, et al.
Publicado: (2014) -
An online peak extraction algorithm for ion mobility spectrometry data
por: Kopczynski, Dominik, et al.
Publicado: (2015) -
A detailed comparison of analysis processes for MCC-IMS data in disease classification—Automated methods can replace manual peak annotations
por: Horsch, Salome, et al.
Publicado: (2017) -
Computational Methods for Metabolomic Data Analysis of Ion Mobility Spectrometry Data—Reviewing the State of the Art
por: Hauschild, Anne-Christin, et al.
Publicado: (2012) -
Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles
por: Hauschild, Anne-Christin, et al.
Publicado: (2015)