Cargando…

Metabolic Profiling of Plasma from Benign and Malignant Pulmonary Nodules Patients Using Mass Spectrometry-Based Metabolomics

Solitary pulmonary nodule (SPN or coin lesion) is a mass in the lung and can be commonly found in chest X-rays or computerized tomography (CT) scans. However, despite the advancement of imaging technologies, it is still difficult to distinguish malignant cancer from benign SPNs. Here we investigated...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Liang, Wen, Zongmei, Wu, Chunyan, Wen, Tao, Ong, Choon Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901282/
https://www.ncbi.nlm.nih.gov/pubmed/24958138
http://dx.doi.org/10.3390/metabo3030539
Descripción
Sumario:Solitary pulmonary nodule (SPN or coin lesion) is a mass in the lung and can be commonly found in chest X-rays or computerized tomography (CT) scans. However, despite the advancement of imaging technologies, it is still difficult to distinguish malignant cancer from benign SPNs. Here we investigated the metabolic profiling of patients with benign and malignant pulmonary nodules. A combination of gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) was used to profile the plasma metabolites in 17 patients with malignant SPNs, 15 patients with benign SPNs and 20 healthy controls. The metabolic profiles were assayed using OPLS-DA, and further analyzed to identify marker metabolites related to diseases. Both GC/MS- and LC/MS-derived models showed clear discriminations in metabolic profiles among three groups. It was found that 63 metabolites (12 from GC/MS, 51 from LC/MS) contributed to the differences. Of these, 48 metabolites showed same change trend in both malignant and benign SPNs as compared with healthy controls, indicating some common pathways including inflammation and oxidative injury shared by two diseases. In contrast, 14 metabolites constituted distinct profiles that differentiated malignant from benign SPNs, which might be a unique biochemical feature associated with lung cancer. Overall, our data suggested that integration of two highly sensitive and complementary metabolomics platforms could enable a comprehensive metabolic profiling and assist in discrimination malignant from benign SPNs.