Cargando…
LIN28 Is Involved in Glioma Carcinogenesis and Predicts Outcomes of Glioblastoma Multiforme Patients
LIN28, an evolutionarily conversed RNA binding protein which can bind to the terminal loops of let-7 family microRNA precursors and block their processing to maturation, is highly expressed in several subsets of tumors that carry poor prognoses, such as ovarian carcinoma, hepatocellular carcinoma, c...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901701/ https://www.ncbi.nlm.nih.gov/pubmed/24475120 http://dx.doi.org/10.1371/journal.pone.0086446 |
Sumario: | LIN28, an evolutionarily conversed RNA binding protein which can bind to the terminal loops of let-7 family microRNA precursors and block their processing to maturation, is highly expressed in several subsets of tumors that carry poor prognoses, such as ovarian carcinoma, hepatocellular carcinoma, colon carcinoma and germ cell carcinoma. However, there has been no study on the expression of LIN28 in glioma tissues or their importance as a prognostic predictor of glioma patients. This study aimed to examine the expression of LIN28 in glioma and correlate the results to patient outcome. We found that LIN28 expression was significantly higher in the group of patients with a poor prognosis compared to patients with a good prognosis by gene microarray. Log-rank analysis showed patients with higher LIN28 expression level in tumor had a shorter progression-free survival and overall survival times compared to those with lower LIN28 expression level. Similar results were also obtained from the tissue microarray analysis. Univariate and multivariate analyses showed high LIN28 expression was an independent prognostic factor for a shorter progression-free survival and overall survival in GBM patients. Furthermore in vitro experiments showed that down-regulation of LIN28 in U251 and U373 cells caused cell cycle arrest in the G1 phase, delayed cell proliferation, increased apoptosis, and resulted in fewer colonies compared to controls. Summarily, our data provides a potential target for cancer therapy as an approach to overcome the poor options currently available for GBM patients. |
---|