Cargando…
Impact of Measurement Error on Testing Genetic Association with Quantitative Traits
Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and vari...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901720/ https://www.ncbi.nlm.nih.gov/pubmed/24475218 http://dx.doi.org/10.1371/journal.pone.0087044 |
_version_ | 1782300892373975040 |
---|---|
author | Liao, Jiemin Li, Xiang Wong, Tien-Yin Wang, Jie Jin Khor, Chiea Chuen Tai, E. Shyong Aung, Tin Teo, Yik-Ying Cheng, Ching-Yu |
author_facet | Liao, Jiemin Li, Xiang Wong, Tien-Yin Wang, Jie Jin Khor, Chiea Chuen Tai, E. Shyong Aung, Tin Teo, Yik-Ying Cheng, Ching-Yu |
author_sort | Liao, Jiemin |
collection | PubMed |
description | Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS) of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD) in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10(−5)) for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable. |
format | Online Article Text |
id | pubmed-3901720 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39017202014-01-28 Impact of Measurement Error on Testing Genetic Association with Quantitative Traits Liao, Jiemin Li, Xiang Wong, Tien-Yin Wang, Jie Jin Khor, Chiea Chuen Tai, E. Shyong Aung, Tin Teo, Yik-Ying Cheng, Ching-Yu PLoS One Research Article Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS) of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD) in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10(−5)) for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable. Public Library of Science 2014-01-24 /pmc/articles/PMC3901720/ /pubmed/24475218 http://dx.doi.org/10.1371/journal.pone.0087044 Text en © 2014 Liao et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Liao, Jiemin Li, Xiang Wong, Tien-Yin Wang, Jie Jin Khor, Chiea Chuen Tai, E. Shyong Aung, Tin Teo, Yik-Ying Cheng, Ching-Yu Impact of Measurement Error on Testing Genetic Association with Quantitative Traits |
title | Impact of Measurement Error on Testing Genetic Association with Quantitative Traits |
title_full | Impact of Measurement Error on Testing Genetic Association with Quantitative Traits |
title_fullStr | Impact of Measurement Error on Testing Genetic Association with Quantitative Traits |
title_full_unstemmed | Impact of Measurement Error on Testing Genetic Association with Quantitative Traits |
title_short | Impact of Measurement Error on Testing Genetic Association with Quantitative Traits |
title_sort | impact of measurement error on testing genetic association with quantitative traits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901720/ https://www.ncbi.nlm.nih.gov/pubmed/24475218 http://dx.doi.org/10.1371/journal.pone.0087044 |
work_keys_str_mv | AT liaojiemin impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT lixiang impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT wongtienyin impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT wangjiejin impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT khorchieachuen impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT taieshyong impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT aungtin impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT teoyikying impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits AT chengchingyu impactofmeasurementerrorontestinggeneticassociationwithquantitativetraits |